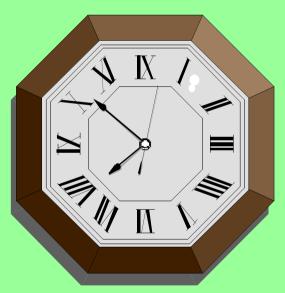


POTENTIAL RESOURCES OF THE MOON

LUNAR RESOURSE ACCESSIBILITY MAJOR FACTORS

- ORIGINAL ROCK COMPOSTION
- **REGOLITH FORMATION**
- IGNEOUS CRYSTAL SETTLING
- ABSENCE OF FLUID WATER



REGOLITH MATURATION

• BEGINS WITH SURFACE STABLIZATION

- MODIFICATION BY:
 - PRIMARY IMPACTS
 - SECONDARY IMPACTS
 - HYDROGEN REDUCTION OF FEO
 - SPACE RADIATION
 - INTERNAL VOLATILE MIGRATION
- SPACE RADIATION

 COSMIC RAYS
 SOLAR-WIND IONS

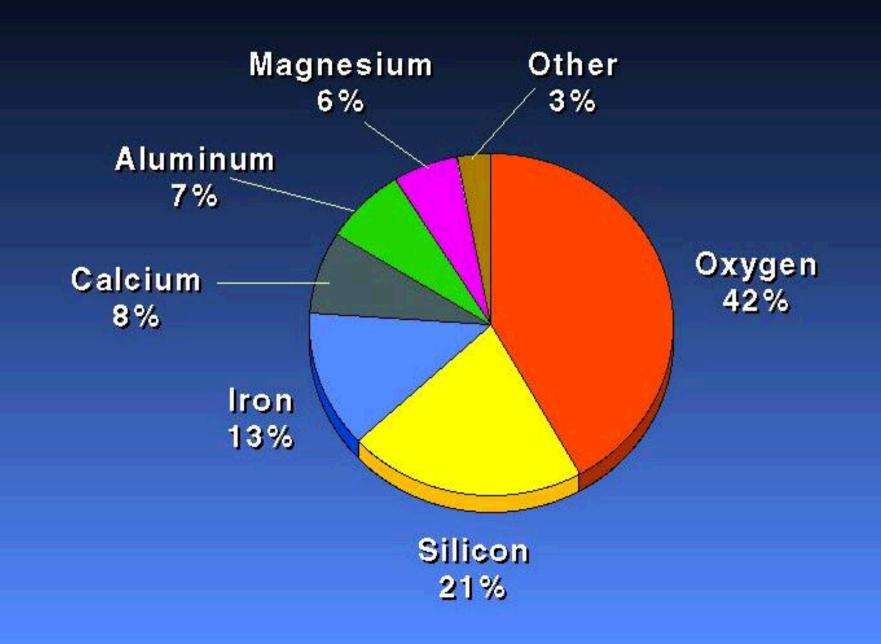
REGOLITH SUMMARY - 1

- **REGOLITH** (mantle of fragmental, unconsolidated material overlying bedrock)
 - >6M DEEP ON 3.8 BY OLD SURFACES
- CONSTITUENTS:
 - ROCK FRAGMENTS
 - AGGLUTINATES (IMPACT GLASS WELDING TOGETHER ROCK AND MINERAL FRAGMENTS)
 - MINERAL FRAGMENTS
 - VOLCANIC GLASS SPHERES AND FRAGMENTS
 - METEORITIC CONTAMINATION (<0.3%)
 - ADSORBED SOLAR WIND VOLATILES (H₂ AND HE)
 - PRODUCTS OF SOLAR AND COSMIC RADIATION

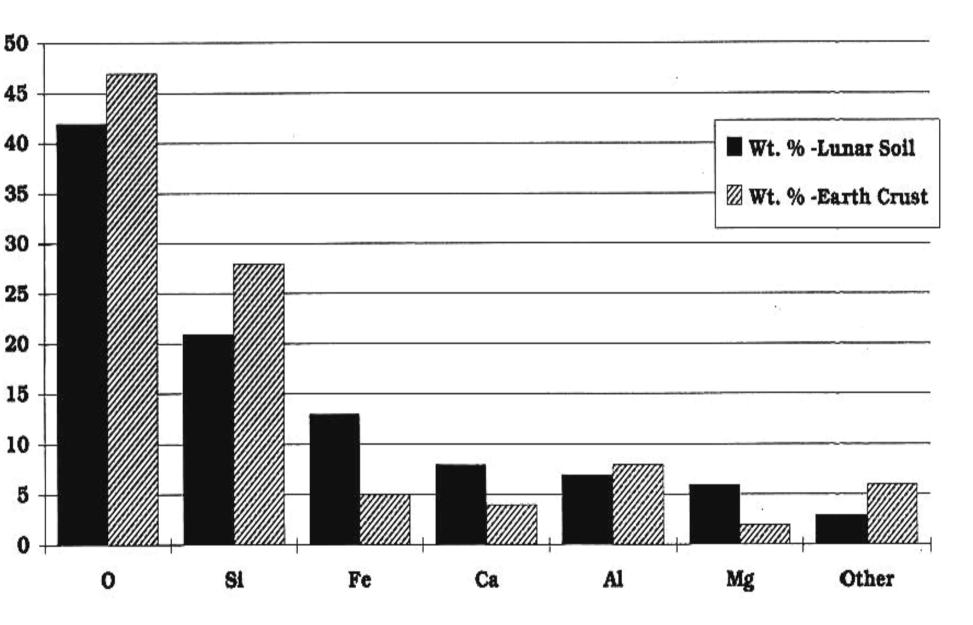
REGOLITH SUMMARY - 2

- LATERAL MIXING RATE
 - ON THE ORDER OF 10S OF METERS PER 100 MY
 - ~100S OF METERS PER BILLION YEARS
- VERTICAL MIXING IRREGULAR
 - 3M DRILL CORES INDICATE TEXTURAL LAYERING BUT NO SIGNIFICANT CHEMICAL CHANGE WITH DEPTH

REGOLITH SUMMARY - 3

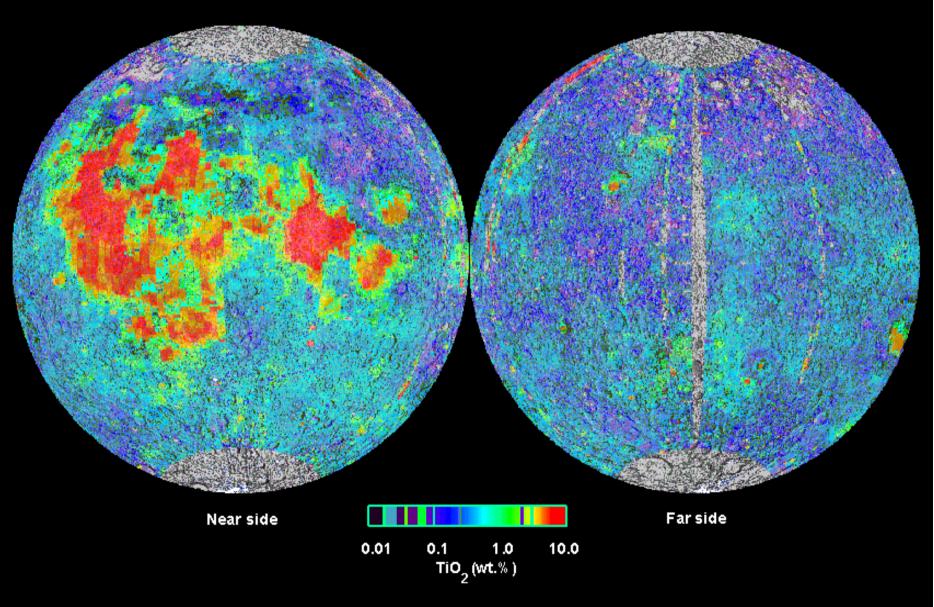

- GEOTECHNICAL PARAMETERS
 - DENSITY ~1.9 GM/CM3
 - HIGH BEARING STRENGTH
 - MODERATE COHESION
 - >60% PARTICLES <100m (THAT IS, PENETRATING DUST!!!!!)
 - **HIGHLY ABRASIVE** (THAT IS, RELIABLE SEALS REQUIRED!!!!)
 - DISSEMINATED, FINE GRAIN NATIVE IRON
 - DISSEMINATED, FINE GRAIN IRON SULFIDE
 - HIGHLY REDUCING (HYDROGEN)

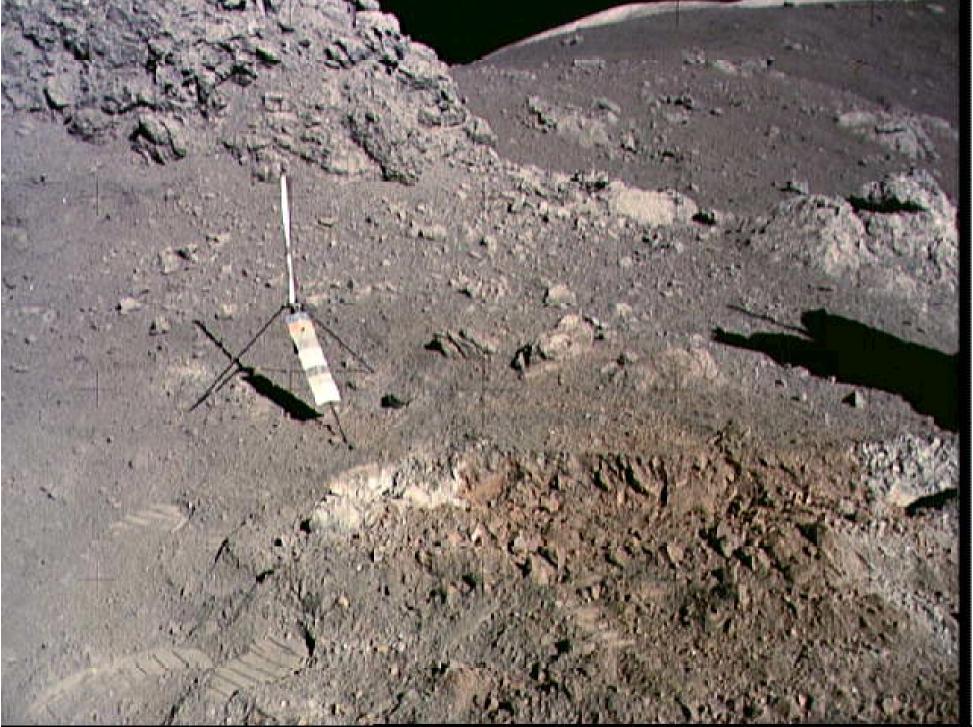
LUNAR CONSTRUCTION NON-METALLIC MATERIALS

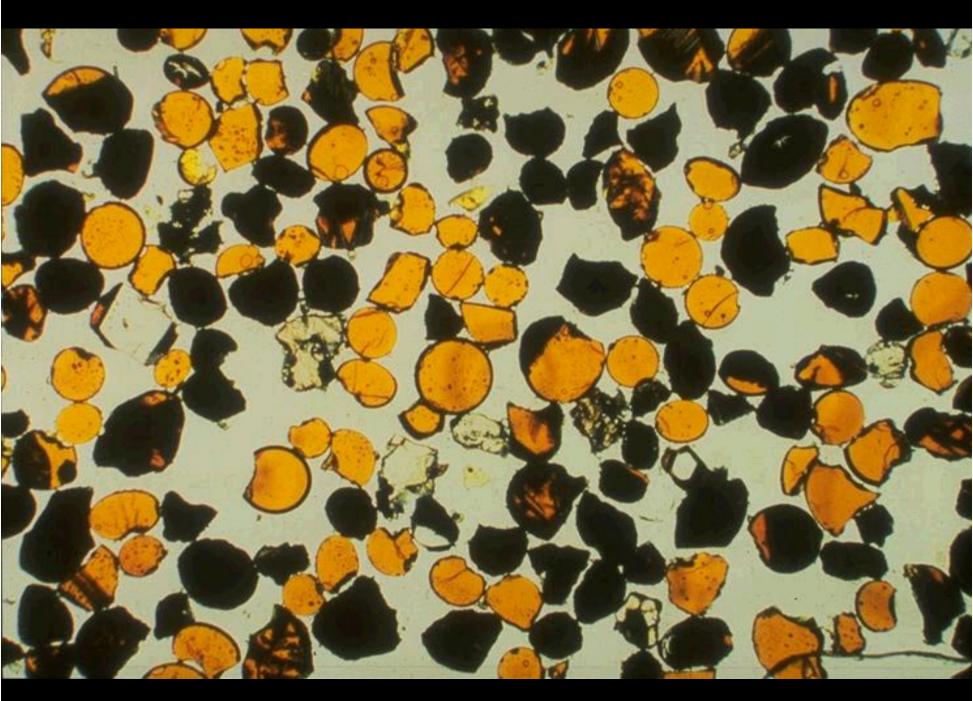

• **REGOLITH**

- INSULATION
- RADIATION PROTECTION
- COARSE REGOLITH FRACTION
 - ROAD AGGREGATE
 - CONCRETE
- FINE REGOLITH FRACTION
 - COMPACTED "BRICK"
 - SINTERED "BRICK"
 - REGOLITH/METAL COMPOSITES
 - SOLAR PHOTOVOLTAIC CELLS

Lunar Soil Composition


The Surface of the Moon is Slightly Richer in Fe, Ca, and Mg Compared to the Earth's Crust




LUNAR MANUFACTURING METALLIC MATERIALS (HIGH TI BASALTS)

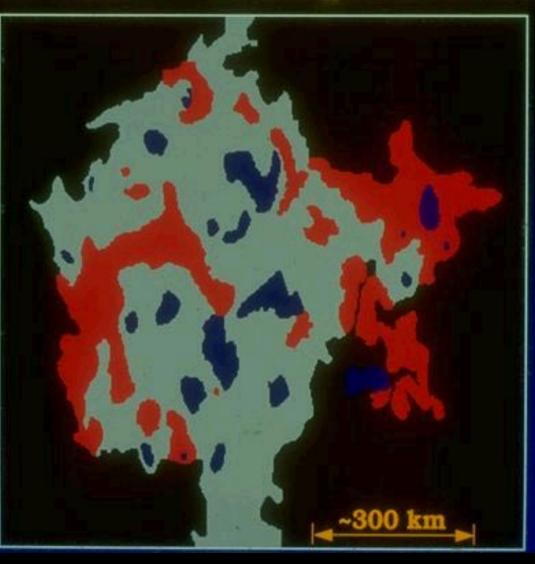
- FINE REGOLITH FRACTION/MAJOR ELEMENTS
 - IRON IN IRON-TITANIUM OXIDE (22 WT % FEO AND 1 WT % NATIVE IRON)
 - TITANIUM IN IRON-TITANIUM OXIDE (11 WT % TIO2 IN ILMENITE)
 - MAGNESIUM IN MAGNESIUM-IRON SILICATES (7 WT % MGO)
 - ALUMINUM IN CALCIUM-ALUMINUM SILICATES (9 WT %AL2O3)
 - SILICON IN CALCIUM-ALUMINUM SILICATES (40 WT % SIO2)
- FINE REGOLITH FRACTION/MINOR ELEMENTS
 - PLATINUM GROUP IN METEORITIC DEBRIS
 - CHROMIUM IN CHROMIUM-IRON OXIDE
- PYROCLASTIC GLASSES
 - MAGNESIUM (16 WT % MGO)
- GRAVITY CONCENTRATIONS IN BASALT FLOWS
 - **TITANIUM** (ILMENITE)
 - ALUMINUM/SILICON (PLAGIOCLASE)
 - CHROMIUM (CHROMITE)
 - IRON/SULFUR (TROILITE)

Clementine Titanium Map of the Moon Equal Area Projection

LUNAR SPECIAL COMPOUNDS

- LUNAR KREEP (NOT NORMALLY ASSOCIATED WITH BASALTIC REGOLITH)
 - PHOSPHATE (P₂O₅)
 - POTASH (K₂O)
 - SODA (Na₂O)

INDIGENOUS LUNAR VOLATILES

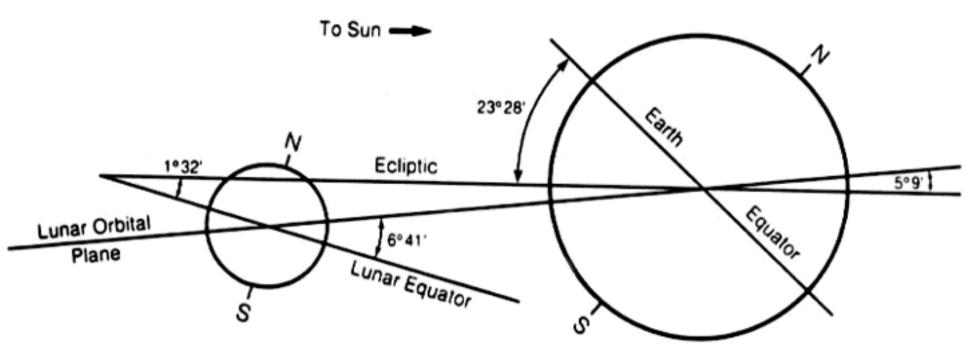

- FROM PYROCLASTIC GLASSES
 - OXYGEN (ELECTROLYSIS OF H₂O PRODUCED BY HYDROGEN REDUCTION)
- ADSORBED ON PYROCLASTIC GLASSES (LARGE VOLUME PROCESSING)
 - FLUORINE
 - CHLORINE
 - VOLATILE METALS (COPPER, ZINC, LEAD)
- FROM REGOLITH (LARGE VOLUME PROCESSING)
 - SULFUR (IRON SULFIDE)

SOLAR WIND VOLATILES REGOLITH FINES

- HYDROGEN
 - 96% OF SOLAR WIND IONS
 - **30 PPM AVE.**
 - HIGHER IN REGOLITH DERIVED FROM TITANIUM-RICH BASALTS AND ANORTHOSITE
 - UP TO ALMOST 150 PPM IN SOME APOLLO 16 SAMPLES
- HELIUM
 - 4% OF SOLAR WIND IONS
 - UP TO 70 PPM IN REGOLITH DERIVED FROM TITANIUM-RICH BASALTS
 - UP TO 30 PPB ³HE
- NITROGEN
- CARBON
- TRACE NOBLE GASES (KR, XE, AR)

Inferred Titanium Content of Regolith of Mare Tranquillitatis

+7.5% 6.0 - 7.5% 3.0 - 6.0%

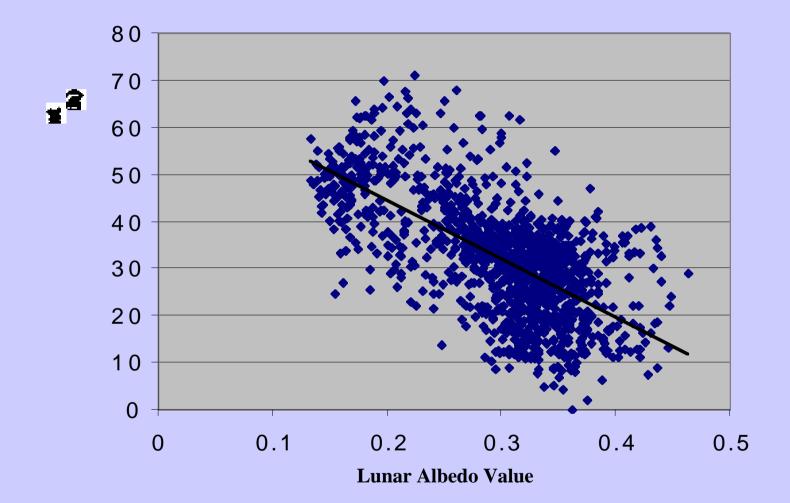

Minable Regolith and Helium Content of Mare Tranquillitatis

Regolith Category	Area, km ²	Avg. He Content, wppm	Regolith Minable, tonnes	He, tonnes	He3, tonnes
A	84,000	38	252x10 ⁹	9.58x10 ⁶	3,635
в	195,000	25	598x10 ⁹	14.96x10 ⁶	5,754
Totals	279,000		850x10 ⁹	24.54x10 ⁶	9,439

Note: He-3 content based on He/He-3 = 2600. Average depth of regolith = 3 m.

COMETARY VOLATILES POLAR DEPOSITS?

- HYDROGEN REGIONAL AVE. INCREASES TO 150 PPM
 - LUNAR PROSPECTOR EPITHERMAL NEUTRON SPECTRA
- VERY HIGH CONCENTRATIONS OF HYDROGEN IN THREE SOUTH POLE CRATERS
 - ASSUMED TO BE WATER-ICE BY PROSPECTOR TEAM
 - FAST NEUTRON SPECTRA CONFIRM?
 - CLEMENTINE BI-STATIC RADAR CONFIRM?
- HYDROCARBONS?


COMETARY VOLATILES DATA SOURCES

- EPITHERMAL NEUTRON DATA (FELDMAN)
 - AVERAGE ~50 wppm HYDROGEN
 - ~150 wppm IN POLAR REGIONS
 - 1500 ± 800 wppm IN DEEP POLAR CRATERS
- CLEMENTINE 750nm ALBEDO VS. NEUTRON DATA (DING)

- 36 wppm NEARSIDE VS. 28 wppm FARSIDE

• CLEMENTINE BI-STATIC RADAR (NOZETTE)

- CONTROVERSIAL INTERPRETATION OF ICE

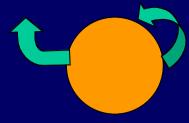
INTERPRETATION?

• PROSPECTOR TEAM

- LARGE QUANTITIES OF POLAR ICE WITH SOME SOLAR-WIND HYDROGEN
- LATER, ICE ONLY IN 3 SOUTH POLE CRATERS
- MORE RECENTLY, ICE ALSO IN REGOLITH
- ALTERNATIVE
 - LARGELY COLD TRAPPED SOLAR-WIND HYDROGEN

SOLAR-WIND IONS

- HYDROGEN (PROTONS)
 - -~96% OF THE SOLAR-WIND
 - INITIALLY IMBEDDED IN MINERAL AND GLASS CONSTITUENTS
 - PARTIALLY RELEASED AS <u>PICKUP</u> <u>IONS</u>
 - MICROMETEORIOD IMPACT
 - **DIURNAL HEATING**
 - RETAINED BY BURIAL



- PERMANENT SHADOW ~230°C
- OUTSIDE PERMANENT SHADOW

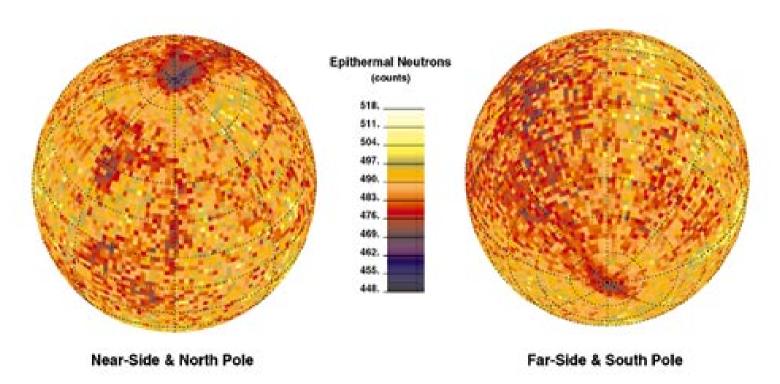
- AVERAGE SURFACE TEMPERATURE **INCREASES WITH DECREASING LATITUDE**

 MAXIMUM CONTRAST BETWEEN **EQUATOR AND PERMANENT SHADOW** - ~350°C

PICKUP IONS

- RELEASED REGOLITH VOLATILES
 - IONIZED AND ENTRAINED IN SOLAR-WIND
 - LOST ENTIRELY OR RE-IMPLANTED
- DEFINITIVE MODEL OF HISTORY OF PICKUP IONS NOT YET AVAILABLE
 - APOLLO, CLEMENTINE AND PROSPECTOR DATA DEFINE ~STEADY-STATE IN REGOLITH
 - SANTARIUS AND STUDENTS HAVE BEGUN TO MODEL OVER-ALL PROCESS

STEADY-STATE HYDROGEN CONCENTRATION


- APOLLO SAMPLES: 100 ± 50 wppm – MAY BE LOW DUE TO HANDLING LOSSES
- PROSPECTOR DATA FOR REGIONS WITH PERMANENT SHADOW
 - ~150 wppm (HIGH END OF APOLLO DATA)
 - X3 THAT SEEN FOR LOWER LATITUDES
 - GRADUAL CHANGE ACROSS PERMANENT SHADOW BOUNDARIES
 - 1500 ± 800 wppm IN DEEP POLAR CRATERS

HYDROGEN RETENTION

- PLAGIOCLASE FELDSPAR (Ca, $Na)_2AI_2Si_2O_8$)
 - KNOWN TO ASSUME A CATION POSITION IN FELDSPAR - SODIUM SUBSTITUTE?
 - NOTE TRANSIENT LUNAR SODIUM ATMOSPHERE
 - SUPPORTED BY INHANCEMENT NEAR LARGE, YOUNG HIGHLAND CRATERS WHERE FRESH PLAGIOCLASE IS EXPOSED
- ILMENITE (FeTiO₃)

- CLEMENTINE-PROSPECTOR COMPARISON BY DING

Medium Energy Neutron Distribution Lunar Prospector

Los Alamos National Laboratory

POLAR SOLAR-WIND CONSIDERATIONS

- VARIABLES AFFECTING ADDITIONS AND LOSSES OF HYDROGEN NEAR THE POLES
 - SOLAR-WIND FLUX VS. LATITUDE AND LONGITUDE
 - TILT OF MOON'S AXIS RELATIVE TO ECLIPTIC
 - NON-ECLIPTIC COMPONENT OF SOLAR-WIND
 - DIURNAL TEMPERATURE VARIATION VS. LATITUDE AND LONGITUDE
 - PICKUP-ION REDEPOSTION RATES VS. LATITUDE AND LONGITUDE
 - ABUNDANCES OF RETENTIVE MINERALS
 - MOON'S INTERACTION WITH THE MAGNETOSPHERE
 - FLUX OF MICRO-METEORITES IMPACTING THE MOON

EROSION OF WATER ICE BY MICROMETEROIDS

- REGOLITH TURNOVER (GARDENING) – FEW CM EVERY 10 MILLION YEARS
- BLANKET OF COMETARY ICE WOULD ERODE AT COMPARABLE RATE
 - SPUTTERING DUE TO SOLAR-WIND WOULD ADD TO EROSION RATE
 - SOME PROTECTION POSSIBLE IN DEEP CRATERS OR BY FORTUITOUS EJECTA

• THE HYDROGEN SIGNAL IN POLAR REGIONS IS LARGELY A CONCENTRATION OF SOLAR-WIND HYDROGEN BY COLD-TRAPPING

SCIENCE CONCLUSIONS

- WATER ICE <u>MAY</u> BE PRESENT IN DEEP CRATERS WHERE PARTIALLY PROTECTED FROM EROSION
- WATER ICE MAY BE LOCALLY MIXED INTO REGOLITH WHERE INITIALLY PROTECTED FROM EROSION BY IMPACT EJECTA