Metallic Fast Reactor Fuels

<u>Background</u>

• The first fuels used for the LMR's (Liquid Metal-cooled fast Reactors) in the 50's and early 60's were metallic (EBR-I, EBR-II).

• In the late 60's, world interest turned toward ceramic fuels.

• Development of metallic fuels continued into 70's because EBR-II continued to be fueled with U-5 Fs

Nb	0.01 %	
Zr	0.1	%
Pd	0.2	%
Rh	0.3	%
Ru	1.9	%
Мо	2.4	%
U	95	%

• Events in the 80's caused a reassessment of reactor technology

- 1.) Cancellation of CRBR (fuel cycle costs)
- 2.) Three Mile Island/Chernobyl (Public Safety Demands)
- 3.) Radioactive Waste "logjam"

• 1983 IFR (Integral Fast Reactor) Concept Start

The Integral Fast Reactor (IFR)

• Na Cooled Fast Reactor

-Ambient-pressure cooling system

• Metallic Fuel (U-Pu-Zr)

-High thermal conductivity -Superior compatibility with coolant

• Innovative Process for Recycling Fuel

-Pyrometallurgical processing ("pyroprocessing") -Simple, compact, economical process

• Passively Inherently Safe

-Safe shutdown relies only on laws of physics - No complicated engineered safety systems -Long times availible foe operator response

• Over 29 y of Operating Experience With the IFR Prototype, EBR-II

-High capacity factor, over 75% -Low personnel exposures -No component failures

IFR Fuel Cycle

Advantages of the IFR Concept

• Improved Reactor Safety

- Proven passively inherently safe

On 4/3/86 reactor shutdown w/o operator or mechanical intervention in two tests:

1.) Loss of flow without scram from full power(simulated conditions in Chernobyl accident)

2.)Loss of heat sink without scram from full power (simulated conditions existing in TMI-2)

- In both tests, inherent feedbacks enabled the reactor to respond to the abnormal events and return to a safe and coolable state

- 1.) Thermal expansion of the core
- 2.) Doppler reactivity feedback

- Atmospheric pressure of primary coolant

- Large thermal inertia of Na pool

- High thermal conductivity of metallic fuel

1.) Low fuel temperature

2.) less stored energy

-Large margin between operating temperature (340-510 °C) and Na boiling temperature (900 °C)

Advantages of the IFR Concept (cont.)

• Improved Nuclear Waste Management

- Actinide elements absent from high-level waste produced

- Capability to recycle LWR spent fuel

- Reduces waste volume

• Efficient Utilization of Fuel Resources

- Initial plants will be fissile self sufficient - Later plants can be operated as Pu breeders

• Potential Economic Parity With Other Energy Sources

- Limited safety-grade construction

- Very long plant life (low pressure, low corrosion)

- Reduced fuel cycle costs via reprocessing

- Flexible deployment: large or small,

modular plants

• Proliferation Resistant

- No separation of Pu (tied up with U and non-fissile actinides)

- Fuel processed and refabricated remotely due to presence of fission products

INCENTIVE FOR ACTINIDE REMOVAL

IFR Operations Proven in EBR-II

• Personnel exposure is 1-2% of LWR's

• EBR-II annual capacity factor (75-80%) over the average for operating commercial plants in the U.S. (\approx 70%)

• EBR-II steam generators have operated without leaks for over 25 years of continuous service

<u>Metal Fuel is the Foundation of</u> <u>the IFR Concept</u>

• Key factor contributing to passive safety characteristics

• Metal fuel fabrication is simple and compact

• Compact, simple pyroprocessing of metallic fuel promises dramatic improvements in fuel cycle economics

• Pyroprocessing facilitates significant improvements in waste management

<u>Performance of IFR Fuel Has Been</u> <u>Demonstrated Successfully</u>

• Ongoing tests of U-Pu-Zr and U-Zr fuels have now achieved burnups of 20 a/o, well in excess of their design target burnup level of 100,000 MWd/T (10 a/o burnup), assuring excellent fuel cycle economics

• Metal assemblies have been operated for up to 223 days <u>beyond</u> cladding failure without any degradation, providing utility operators with assurance of reliable, efficient plant operation

• EBR-II was fully converted for operation with the IFR-type fuel alloys (U-Zr and U-Pu-Zr)

Terminology

• Pyroprocessing:

<u>Pyrometallurgical and electrochemical processing</u>

• Key Step: *Electrorefining*

Electrotransport in a molten salt (LiCl-KCl) electrolyte

• Electrorefining:

Metal is electronically dissolved at an anode made of impure metal and re deposited at a cathode in a condition of greater purity

Anode: M---> M+3 + 3e⁻

Cathode: M⁺³ + 3e⁻ ---> *M*

Chemical Basis of Pyroprocessing

• Separations based on the relative ease of oxidation into a molten salt

-Free energy of formation of metal chloride is primary determinant of ease of oxidation

• Some Separations are Chemically Complete

-Halides remain in salt as anions -Alkali metal and alkaline earth metals (plus Sm and Eu) are completely oxidized and remain in salt -Noble metals not oxidized; remain as metals

• Actinide and Rare Earth Metals Partition Between Salt and Metal Phases

-Can be transferred to salt by oxidation, or to metal by reduction

Pyroprocess Chemistry

• Treat as a Series of Equilibrium Reactions

M + *M*′*CI3* <---> *M*′ + *MCI3*

• ΔG = Free Energy Change

$$\Delta G = \Delta G_f^0(MCl_3) - \Delta G_f^0(M'Cl_3)$$

•
$$K_{eq} = \exp\left(\frac{-\Delta G}{RT}\right) = \frac{\left(a_{M'}a_{MCl_3}\right)}{\left(a_{M}a_{M'Cl_3}\right)}$$

Process is Controlled by Adjusting Redox State of Electrorefining Cell

Electrorefining-Schematic

Free Energies of Formation

$-\Delta G_{f}^{0}$ in kcal/g-mole equiv. Cl @ 500°C		
Elements that remain in salt (very stable chlorides)	Materials that can be electrotransported efficiently	Elements that remain in Cd pool as metals (less stable chlorides)
BaCl287.9CsCl87.8RbCl87.0KCl86.7SrCl284.7LiCl82.5NaCl81.2CaCl280.7LaCl370.2PrCl369.0CeCl368.6NdCl367.9YCl365.1	CmCl ₃ 64.0 PuCl ₃ 62.4 AmCl ₃ 62.1 NpCl ₃ 58.1 UCl ₃ 55.2 ZrCl ₂ 46.6	CdCl ₂ 32.2 FeCl ₂ 29.2 NbCl ₅ 26.7 MoCl ₄ 16.8 TcCl ₄ 11.0 RhCl ₃ 10.0 PdCl ₂ 9.0 RuCl ₄ 6.0

Plutonium Recovery

• Chemical Reaction at Solid Cathode

 $-UCl_3 + Pu$ (s) <----> $PuCl_3 + U$ (s)

-PuCl₃ is more stable than UCl₃

- Deposition of Pu is favored if

$$\frac{[PuCl_3]}{[UCl_3]} > 10^5_{(not \ practical)}$$

• In the Presence of Cd, the Pu Chemical Activity is Greatly Lowered and It Behaves as though Its Chloride were Only Very Slightly More Stable Than UCl₃

• Chemical Reaction-Liquid Cd Cathode

-UCl₃ + Pu (Cd) <---> PuCl₃ + U (Cd)

- Deposition of Pu is favored only if

$$\frac{\left[PuCl_{3}\right]}{\left[UCl_{3}\right]} > 2$$

- Deposition of TRU elements occurs as the intermetallic compound; e.g., PuCd₆

- U also deposits in a quantity roughly equal to the TRU elements

ADVANTAGES OF PYROPROCESSINC

Simple, compact system

- Low capital and operating costs

Small high-level waste volumes

- About 300-500 liters (0.3-0.5 m³) per MTIHM spent fuel processed

• Limited secondary wastes

- Only contaminated equipment, tools, other indirect process wastes such as gloves, rags, etc.
- Actinide elements virtually absent from waste streams
- Pyroprocessing can be applied to the treatment of a wide variety of spent fuel and waste types, offering a common solution to the disposition of nuclear wastes
 - Metal fuel
 - Graphite fuel
 - Pu processing scrap and waste

- Oxide fuel
- Naval fuel
- Test/Research Reactor fuel

INTEGRATED IFF. AND LWR SPENT FUEL PYROPROCESSING

