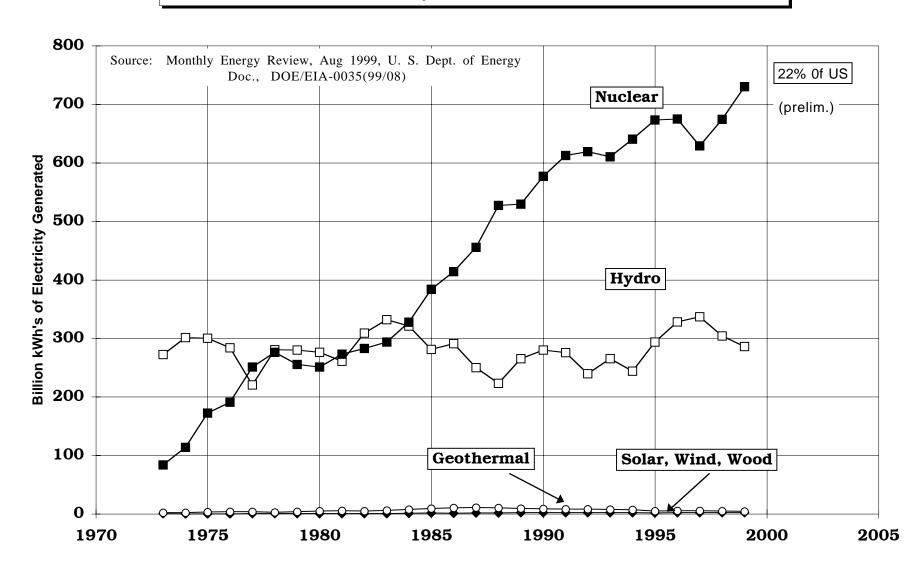
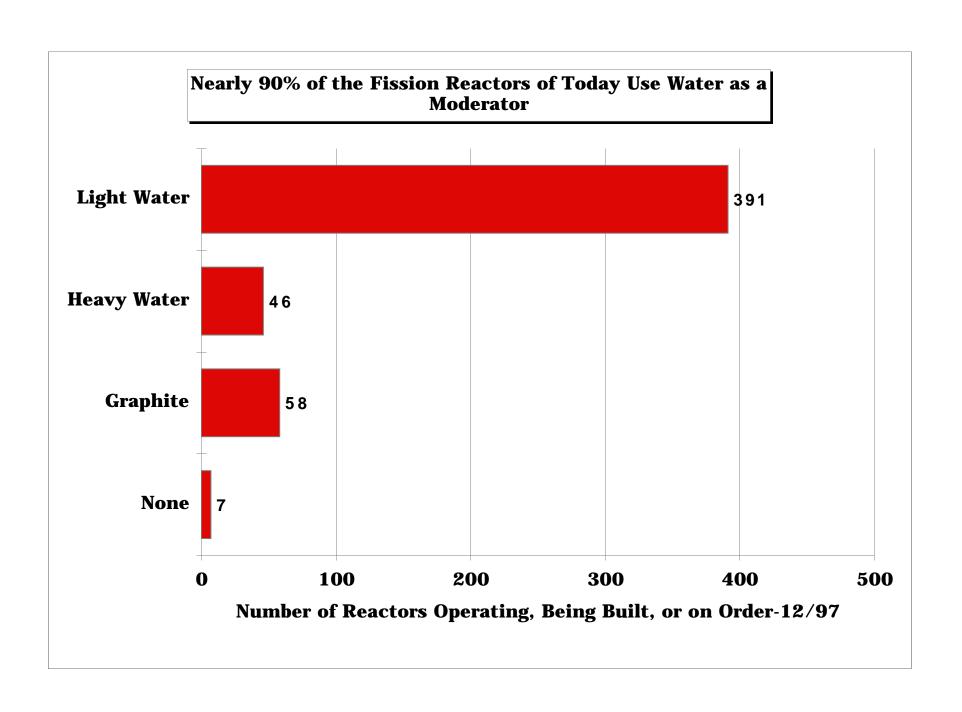
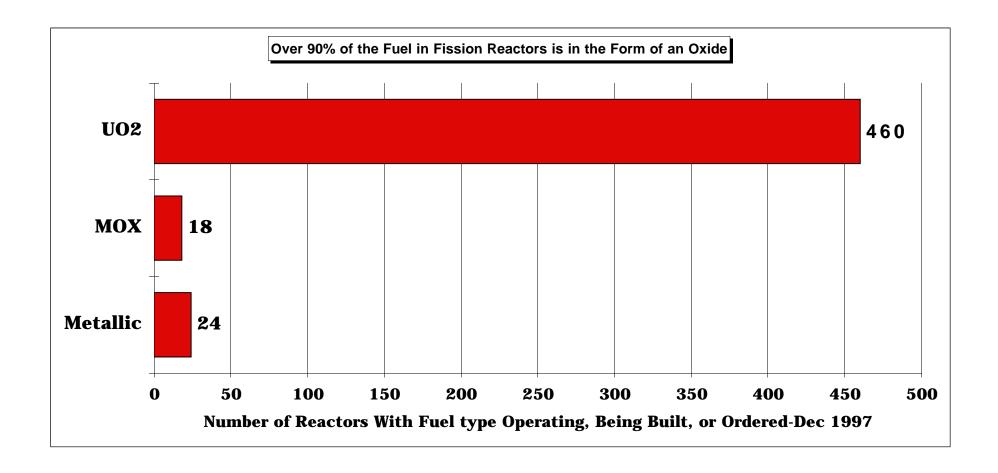


	Reactors in Operation in 1998		Reactors Under Const. 1998		Nuclear Elect. Supplied in 1998			Nuclear Elect. Supplied in 1998	
Commen	# of Unite	Total	# of	Total	Billion kWhrs	0/ of Total	0	Country	0/ of Total
Country	# of Units	MWe	Units	MWe	(1998)	% of Total	Country	Country	% of Total
Lithuania	2	2,600	0	0	12.3	77.2	Lithuania	Lithuania	77
France	58	64,330	1	1,516	368.4	75.8	France	France	76
Belgium	7	5,836	0	0	43.9	55.2	Belgium	Belgium	55
Sweden	12	10,438	0	0	70.0	45.8	Sweden	Sweden	46
Slovak Rep.	5	2,200	1	440	11.4	43.8	Slovak Rep.	Ukraine	45
Switzerland	5	3,279	0	0	24.4	41.1	Switzerland	Slovak Rep.	44
Ukraine	14	12,808	2	2,000	70.6	45.4	Ukraine	Bulgaria	42
Bulgaria	6	3,760	0	0	15.5	41.5	Bulgaria	Korea	41
Hungary	4	1,840	0	0	13.1	35.6	Hungary	Switzerland	41
Slovenia	1	652	0	0	4.8	38.3	Slovenia	Slovenia	38
Armenia	1	408	0	0	1.4	24.7	Armenia	Japan	36
Korea	14	12,089	6	5,750	85.2	41.4	Korea	Hungary	36
Japan	53	45,362	2	1,925	306.9	35.9	Japan	Spain	32
Spain	9	7,400	0	0	56.7	31.7	Spain	Taiwan	29
Germany	19	22,069	0	0	145.2	28.3	Germany	Germany	28
Taiwan	6	5,144	2	2,700	35.3	28.8	Taiwan	Finland	27
Finland	4	2,650	0	0	21.0	27.4	Finland	UK	27
UK	35	14,208	0	0	91.1	27.1	UK	Armenia	25
US	104	101,733	0	0	673.7	18.7	us	Czech Rep.	21
Czech Rep.	4	1,752	2	1,962	12.4	20.5	Czech Rep.	US	19
Canada	14	10,915	0	0	67.5	12.4	Canada	Russian Fed.	13
Russian Fed.	29	21,242	1	706	95.4	13.1	Russian Fed.	Canada	12
Argentina	2	1,005	1	745	6.9	10.0	Argentina	Romania	10
South Africa	2	1,930	0	0	13.6	7.3	South Africa	Argentina	10
Mexico	2	1,329	0	0	8.8	5.4	Mexico	South Africa	7
Netherlands	1	481	0	0	3.6	4.1	Netherlands	Mexico	5
India	10	1,840	6	1,880	10.2	2.5	India	Netherlands	4
Romania	1	706	1	706	4.9	10.4	Romania	India	3
China	3	2,268	6	4,600	13.5	1.2	China	China	1
Brazil	1	657	1	309	3.3	1.1	Brazil	Brazil	1
Pakistan	1	137	1	325	0.3	0.7	Pakistan	Pakistan	1
Kazakhstan	1	150	0	0	0.1	0.2	Kazakhstan	Kazakhstan	0
Iran	0	0	2	2,111	0.0	0.0	Iran	Iran	0
Total	430	363,218	35	27,675	2,291	2.0			


Worldwide Fission Power Reactor Status-December 31, 1998


	Operating	Under Construction	on Total
# of Reactors	430	35	475
Capacity-MW _e	363,218	27,675	400,893
Experience Reactor-Year	9,010 rs	-	9,010
Research Reactors	323 (1991)	-	323 (1991)

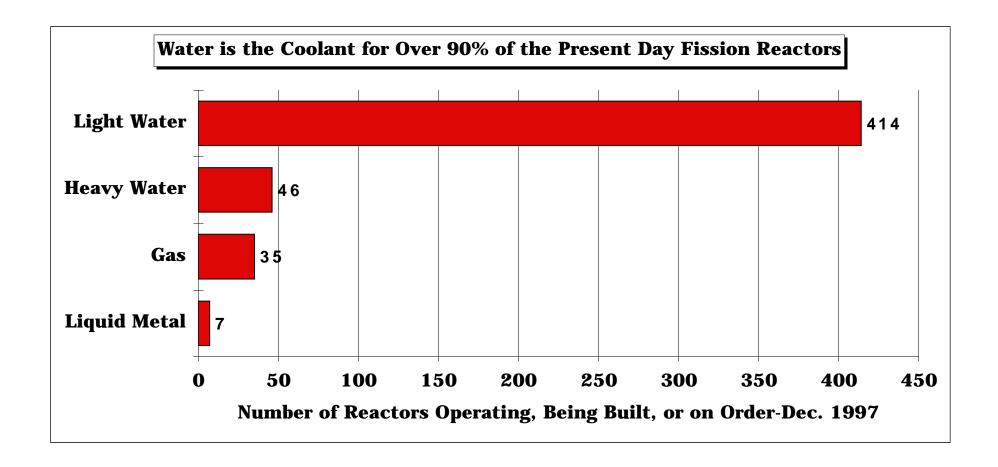

Frequency of new nuclear power plant connections to the grid around the world.

```
1986 1 every 2.2 weeks
1987 1 every 2.5 weeks
1988 1 every 3.5 weeks
1989 1 every 5.5 weeks
1990 1 every 13 weeks
1991
      1 every 8.7 weeks
      1 every 10.4 weeks
1992
1993
      1 every 8.7 weeks
1994
      1 every 7.4 weeks
      1 every 13 weeks
1995
1996 1 every 10.4 weeks
1997 1 every 13 weeks
      1 every 13 weeks
1998
```

Nuclear Power Continues to Outstrip the Non-Fossil Fuels in Generation of Electricity in the United States

Coolant Attributes For Fission Reactors

1.) High thermal


conductivity

2.) High C_p

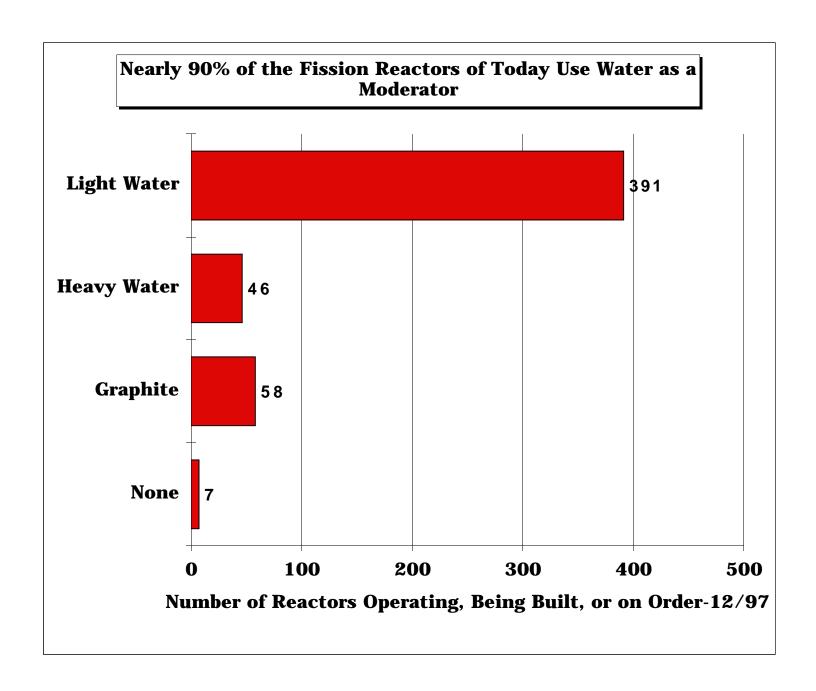
3.) Stability (Irradiation, Temp.)

4.) Low induced radioactivity

5.) Low corrosiveness

Attributes of Moderator Materials

- 1.) High scattering cross section
- 2.) Low absorption cross section
- 3.) High ξ =ln (E₁/E₂) energy loss/collision

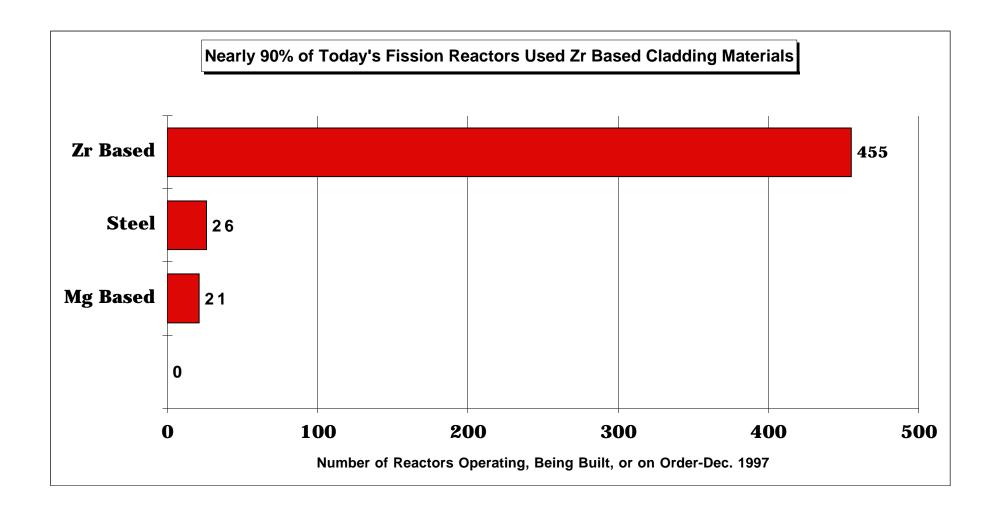

$$\xi = 1 + \frac{(A-1)^2}{2A} \ln \frac{A-1}{A+1}$$

$$\xi \approx \frac{2}{A + \frac{2}{3}}$$
 for $A > 2$

Slowing Down Power = SDP= $\xi N\sigma_s = \sum_s \xi$

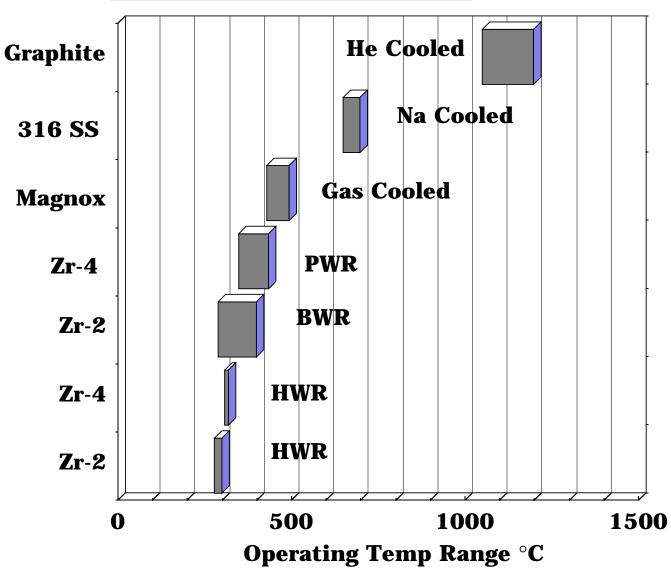
Moderating Ratio =MR =
$$\frac{\sum_{s} \xi}{\sum_{a}}$$

Moderator	SDP, cm ⁻¹	Mod Ratio	Comments
H2O	1.53	72.	
D20	0.37	12,000.	≈ 100 \$/kg
He (STP)	0.000016	83.	low ρ
Be	0.176	159.	≈ 200 \$/kg
С	0.64	170.	
ZrH1.79	0.8	56.	

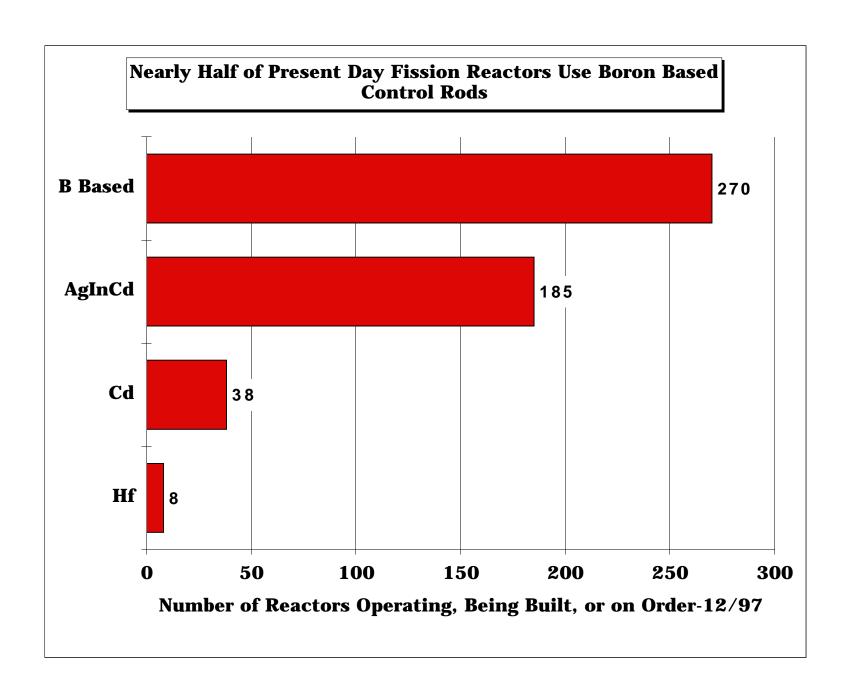


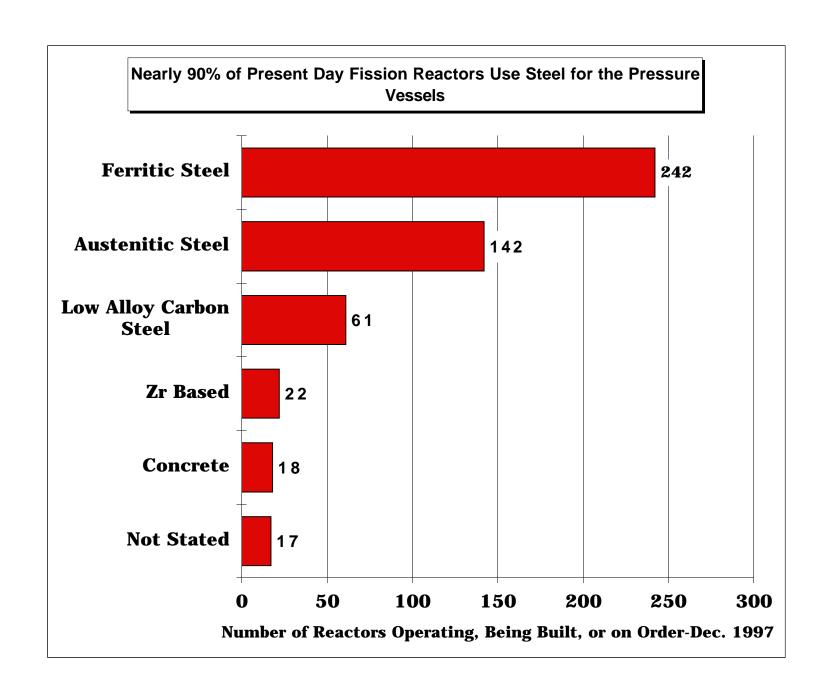
	General Characteristics of Fission Reactor Designs					
Туре	Fuel (% ²³⁵ U)	Moderator	Coolant (atm)	Steam Generator		
PWR	UO ₂ (3.2)	H ₂ O	H ₂ O (160)	Separate Circuit		
BWR	UO ₂ (3.2)	H ₂ O	H ₂ O (70)	Direct		
CANDU	UO ₂ (0.711)	D_2O	D ₂ O (90)	Separate Circuit		
Magnox	U (0.711)	Graphite	CO ₂ (20)	Separate Circuit		
AGR	UO ₂ (2.3)	Graphite	CO ₂ (40)	Separate Circuit		
RBMK	UO ₂ (2.0-2.4)	Graphite	H ₂ O (70)	Direct		
LMFBR	UO ₂ -PuO ₂ (15% ²³⁹ Pu)	None	Na (≈1)	Separate Circuit		

Fuel Must Be Protected From the Coolant and the Coolant Must Be Protected From the Fuel


Attributes of Cladding

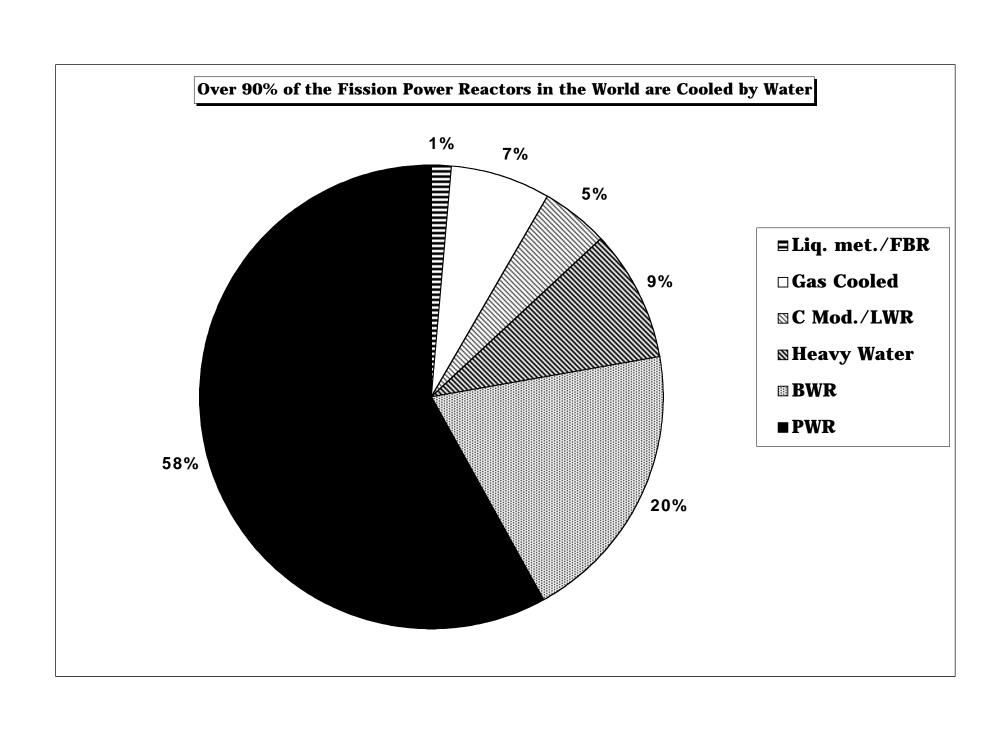
- 1.) Adequate $\sigma_{\boldsymbol{V}}$ at high T & during irradiation
- 2.) Resist corrosion
- 3.) Dimensionally stable
- 4.) Predictable Mechanical Properties
- 5.) High thermal conductivity
- 6.) Good neutronic properties
- 7.) Easy to fabricate and install
- 8.) Easy to reprocess
- 9.) Low Cost
- 10.) Low demand on scarce resources


Summary of Fission Reactor Operating Temperatures						
Cladding Material	T _{max} , °C	Coolant	Tout °C			
<u>Fast Reactors</u>						
316 SS	650-700	Na	500-550			
<u>HWR</u>						
Zircaloy-2	280-300	D20	260-310			
Zircaloy-4	310-330	D20	260-310			
<u>Graphite</u>						
Magnox	430-495	CO ₂	350-400			
Mg-Zr	465-510	CO ₂	350-400			
Graphite	1050-1200	Не	750-850			
Austenite	625-640	Не	750-850			
<u>BWR</u>						
Zircaloy-2	290-400	H20	280-290			
<u>PWR</u>						
Zircaloy-4	350-435	H20	310-330			


Operating Temperature Range for Cladding Material for Fission Reactors

Attributes of Control Rod Materials

- 1.) High absorption cross section
- 2.) Adequate strength for solid rods
- 3.) Low mass to permit rapid movement
- 4.) Corrosion resistance
- 5.) Stability- Chemical and Dimensional
- 6.) Low Cost
- 7.) Good heat transfer capabilities



Attributes of Shield Material

- 1.) Good moderating material
- 2.) Good neutron absorber
- 3.) High density to attenuate gamma rays

Possible Shield materials

- A.) Amalgums
- **B.)** Cements & concretes with special aggregates
- C.) Ceramics and cermets
- D.) Glasses and fused salts
- E.) Metal ores
- F.) Metal alloys and sintered powers
- G.) Organics such as plastics, metal esters, metal loaded resins, elastomers, and silicones
- H.) Silica and other gels preciptated from B loaded solutions

The U. S. Electric Utility Capacity Margin Has Fallen Below the Recommended 20% "Floor" 40 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 0 Source: EEI Statistical Yearbook-1995