Pressurized Water Reactor Pressure Vessels

Material from "Aging and Life Extension of Major Light Water Reactor Components" edited by V. N. Shah and P. E. MacDonald Elsevier, New York, 1993

Introduction

• "In terms of plant safety, the reactor pressure vessel (RPV) is the most critical pressure boundary component in a PWR"

- The RPV ;
 - 1.) Vital safety barrier to fission product release

2.) Supports and guides control rods

- 3.) Supports vessel internals
- 4.) Provides coolant around the reactor core
- 5.) Directs reactor coolant to steam generator
- 2 Major concerns for the RPV.
 - **1.) Radiation embrittlement**
 - 2.) Fatigue

Design and Materials

• Major US Vendors for RPV's

Combustion Engineering (Now part of a European conglomerate) Babcock & Wilcox Westinghouse (via CE and B&W, Chicago Bridge & Iron, Rotterdam Dockyard)

• Different design specifications depending on date of fabrication

Before 1963-ASME Boiler & Pressure Vessel Code, Sections I and III.

After 1963-ASME Boiler & Pressure Vessel Code, Section III.

• Materials

Earliest RPV's used SA302B steel (Table 3-1) Most vessels are made from SA533B (Table 3-1) Latest RPV's used low Cu/P contents Inside RPV is lined with stainless steel (types 304(early), 308 & 309) to reduced corrosion Heat Treatments

All vessel welds were post heat treated at 610 ± 14 °C for 40-50 hr's (early) and 25 hr's in the newer RPV's.

• Diameters

Westinghouse-3.35 to 4.11 meters Babcock & Wilcox-4.34 meters Combustion Engineering-3.99 to 4.37 meters Combustion Engineering System 4.62 meters

80-

• See Figure 3-1

Stressors

• Primary Stressors

Mechanical pressure loads during operation Periodic thermal transients Dead weight loads Pressurized thermal shock

• Other Important Parameters

Temperature Water Chemistry Mechanical Contact • Ductility is an important measure of performance

Charpy V-notch---(CVN) Ductile to brittle transition temperatures (DBTT) Upper shelf energies (USE) (see figure 3-2)

Pressure-Temperature (P-T) Limits

• PWR vessels typically experience pressures of 15.5 MPa (2250 psi) and temperatures of nearly 288 °C (550 °F) during normal steady state operation.

• Perturbations to these conditions are what set the limits to RPV performance.

• P-T limits require that plants operate above certain minimum and below certain maximum limits

Minimum T to be above DBTT The reactor coolant pump characteristics govern the maximum T

• See Figure 3-3

Note: if a critical size defect had been present at a critical site and the degree of radiation embrittlement had been severe enough, this transient might have resulted in the rupture of the pressure vessel.

- Primary Transients Leading to Fatigue
 - **1.) Plant heatup/cooldown**
 - 2.) Plant loading/unloading
 - **3.) Reactor trips**
 - 4.) Loss of flow
 - 5.) Abnormal loss of load

See Table 3-2

Degradation Sites

• Beltline region (embrittlement)

Welds may be weakest link because early welding materials used Cu coated filler rods

• Geometric discontinuities (fatigue)

Closure studs Outlet nozzles Inlet nozzles Instrumentation nozzles Control rod drive nozzles

Degradation Mechanisms

• Generally corrosion and stress corrosion cracking are not a problem in PWR RPV's because water contains low O₂

- Erosion and cavitation not a problem
- High T creep not a problem

Radiation Embrittlement

• Neutron fluence range-

10¹⁸ to 10¹⁹ n/cm² (E> 1 MeV)

• Result for Charpy V-notch (CVN) specimens:

Increase in reference DBTT (RT_{NDT}) (usually measured at 41 J [30 ft-lb] energy, or, T_{30})

Drop in upper shelf energy (USE)