# **Experimental and Theoretical Studies of Electrostatic Confinement**

R. A. Nebel, J. Park, W. G. Rellergert, M. Sekora Los Alamos National Laboratory Los Alamos, New Mexico 87545

# Outline

- I. Electrostatic Basics
- **II.** Motivation
- **III. Review of Periodically Oscillating Plasma Sphere physics**
- **IV. Potential "Show Stoppers"**
- V. Equilibrium and Stability of Virtual Cathodes
- VI. Experiment

VII. Spherically Convergent Ion Focus (SCIF) Systems

- VIII. INS as a neutron Source
- **IX.** Conclusions

## **Electrostatic Basics**

- I.  $T \sim V_{applied}$  (easy)
  - A. Inexpensive machines give lots of neutrons
  - **B.** Near-term applications as neutron sources
  - C. Advanced fuels are easier than in conventional systems
- II.  $\tau_{classical} \rightarrow \infty$  (not too bad)
  - A. Confine plasma in deep potential wells
  - B. No cross-field diffusion size limit

#### III. Density limited by $\lambda_{\text{Deff}}/a \sim 1$ (difficult)

- A. Low density => Low power density
- B. Power density ~  $1/r^4$ , Power out ~ 1/r

## **IV. Summary**

- A. Small size, high voltage (difficult technology problem)
- B. Density enhancement scheme required
  - 1. Focused ion plasma (subject to Nevins problem)
  - 2. Oscillating thermal plasma

# Why IEC?

#### \* Massively Modular Penning Trap Reactor

**Penning Trap Reactor Vessel** 



\* Mass Power Density for Modular Reactors is a paradigm shift from conventional systems.

$$MPD = \frac{2 \pi \eta P_{wall}}{\rho} \frac{a^2}{a (2 a t + t^2)} \frac{F a}{r_{tube}}$$

\* High MPD (~ LWR) can be achieved with conventional wall loads.

- \* Why can we do this with IECs?
  - Confinement doesn't depend on size
  - Power out ~  $1/r_{tube}$
- \* Problem: Beam Systems have Trouble getting Q > 1.

# **Power Scaling**

I. Poisson's Equation

 $n_e \sim \nabla^2 \phi \sim \Delta \phi/a^2$  (note: here "a" is the  $r_{tube}$ )

- II. Average ion density ~ 10% electron density  $n_i \sim .1n_e$
- III. Fusion power density

$$p = 1/2(n_i)^2 < \sigma v > ~ 1/a^4$$

IV. Total power

 $P=4/3\pi a^3p\sim 1/a$ 

# **POPS Ion Physics<sup>2,3</sup>**



- 1. 1-D Time and space separable solutions exist.
- 2. Solutions are stable.
- 3. Stable spectrum has an infinite number of discrete modes with accumulation point at  $\omega=0$ .
- 4. Density profile is Gaussian in radius, Maxwellian in velocity.
- 5. Profiles remain in l.t.e. throughout oscillation (eliminates "Nevins Problem")
- 6. Solutions likely to be attractors.
- 2. D. C. Barnes, R. A. Nebel, *Physics of Plasmas* 5, 2498 (1998).
- 3. R. A. Nebel, D. C. Barnes, *Fusion Technology* 38, 28 (1998).

## Ion Phase Space Motion in a Harmonic Oscillator



- Distribution Functions Move as a Rigid Rotor.
- Density and Velocity Profiles Exchange Every 1/4 Period.
- Maxwellian velocity distribution requires Gaussian density profile

# **Potential Show Stoppers**

- High Voltage, Small Size
  - How bad is it?
  - Stability limits on Virtual Cathode (Electron Cloud).
- Electron Cloud Uniformity
  - Attractor ⇒ Energy Flow-through Issue
  - How fast do the ions relax and thermalize?
- Space Charge Neutralization During Ion Collapse
- Impurity Control
- Oscillation Phase Locking and Control
- Insulator Integrity

## Virtual Cathode Equilibrium and Stability

#### Equilibrium

Pressure balance and Poisson's equation lead to

$$\phi_{0eff}(\mathbf{r}) = \phi_{00eff}(1 - (\mathbf{r}/a)^2)$$

where

$$\phi_{00eff} = -e(n_0 - n_b)a^2/(6\epsilon_0)$$

and

$$p_0(r) = p_{00} + en_0(\phi_{0eff}(r) - \phi_{00eff})$$

Stability

Energy principle leads to sufficient condition for stability

 $ds/d\phi_{0eff} < 0.$  (Rayleigh-Taylor criterion)

where  $s=p/(m_e n)^{\gamma}$  is the entropy density. But for constant density

 $ds/d\phi_{0eff} = (dp/dr)/(d\phi_{0eff}/dr) = en_0 > 0$ 

which is always violated everywhere in the plasma.

#### **Dimensionless Linear Eigenvalue Equations**

$$\phi'' + 2/x \phi' - l(l+1)/x^2 \phi = 6n$$

$$(-\Omega^2 + \Omega_{eff}^2 + 1)n - (\lambda_D/a)^2 [p'' + 2/x p' - l(l+1)/x^2 p] + (\Omega_{eff}^2 x/3)n' = 0$$

$$-\Omega^2 (\lambda_D/a)^2 p + \Omega_{eff}^2 x/3 [-(\lambda_D/a)^2 p' + \phi'/6 + (\Omega_{eff}^2 x/3)n] + \Gamma [(\lambda_D/a)^2 + \Omega_{eff}^2 x^2/6] \Omega^2 n = 0$$
where  $\omega_{pe}^2 = e^2 n_0 / (\varepsilon_0 m_e), \ \omega_{eff}^2 \equiv \omega_{pe}^2 - e^2 n_b / (\varepsilon_0 m_e), \ \Omega^2 \equiv \omega^2 / \omega_{pe}^2, \ \Omega_{eff}^2 \equiv \omega_{eff}^2 / \omega_{pe}^2,$ 

$$\lambda_D \equiv [\varepsilon_0 k_B T_{00} / (n_0 e^2)]^{1/2}, \ x \equiv r/a, \ p \equiv \delta p / p_{00}, \ n \equiv \delta n / n_0, \ \phi \equiv -\delta \phi / \phi_{00}.$$

The equations form a fourth order, self-adjoint system of equations. The only dependences are on  $\lambda_D/a$ ,  $\omega_{eff}^2$ ,  $\Gamma$ , and  $\omega_{pe}^2$ .



- \* No window of absolute stability
- \* Marginal points at Brillouin limit and  $\lambda_D/a \rightarrow$  infinity.
- \*  $\gamma \sim 1 / (\lambda_D/a)$  for large  $\lambda_D/a$  (incompressible Rayleigh-Taylor limit).

## **Stable Virtual Cathodes**

Do stable profiles exist that are sufficiently close to the desired harmonic oscillator potential that the POPS scheme will work?

Combine the marginally stable compressible Rayleigh-Taylor profile:

$$d(p/n^{\Gamma})/dr = 0$$

with pressure balance and Poisson's equation and write in dimensionless form:

$$v'' + 2/xv' + [(\Gamma - 2)/v](v')^2 - \Gamma/(\lambda_D/a)^2 v^{(2-\Gamma)}(v - v_b) = 0$$

where  $\nu \equiv n/n_{or}$  and  $\nu_b \equiv n_b/n_{or}$ .

# **Marginal Stability**



## **Kinetic Effects**



#### \* Approximations

- Cold beam
- Slab geometry

#### \* Dispersion relation

$$1 = \omega_{\rm pe}^{2} [1/(\omega + kV_0)^2 + 1/(\omega - kV_0)^2]$$

#### \* Marginal Limit

$$\begin{split} \omega_{pe}{}^2 &= k^2 {V_0}^2/2 \\ \text{or} \\ & (\lambda_{Deff}/a)^2 = 1 \\ \text{where} \\ & \lambda_{Deff} \equiv [\epsilon_0 k_B {V_0}^2/(2n_0e^2)]^{1/2} \end{split}$$

#### \* Conclusion:

 $1 \leq (\lambda_{\text{Deff}} / a)_{\text{crit}}$  for two-stream stability

#### \* Does a critical value for $\lambda_{\text{Deff}}/a$ exist?

# $(\lambda_{\text{Deff}}/a)_{\text{crit}}$

#### Fluid results (thermal electron distribution):

Stable virtual cathodes exist which are "close enough" to the desired harmonic oscillator potential if:

1.2 <  $\lambda_{\text{Deff}}/a$ .

#### Kinetic results (self-colliding beam distribution):

Stable virtual cathodes exist if:

 $1 < \lambda_{\text{Deff}}/a$ .

## We propose to find $(\lambda_{\text{Deff}}/a)_{\text{crit}}$ experimentally.



# Why is $(\lambda_{\text{Deff}}/a)_{\text{crit}}$ important?

Radius

$$\left|\phi_{applied}\right| / \left|\phi_{virtual}\right| \sim (\lambda_{Deff}/a)_{crit}^{2}$$

## **Theoretical Prediction:**

If  $(\lambda_{\text{Deff}}/a)_{\text{crit}}^2 = 1$  then  $|\phi_{\text{applied}}| / |\phi_{\text{virtual}}| = 7$ 

# **Virtual Cathode Stability Summary**

- \* POPS virtual cathodes violate a compressible Rayleigh-Taylor stability criterion for electrons.
- \* Growth rates fall at large  $\lambda_{\text{Deff}}/a$  and near Brillouin limit, but no window of absolute stability exists in the fluid model.
- \* Stable profiles that are "close enough" exist for  $\lambda_{\text{Deff}}/a \ge 1.2$
- \* Kinetic 2 stream limit suggests that a critical value of  $\lambda_{\text{Deff}}/a$  for stability exists and that this value is ~ 1.
- \* Since  $\phi_{applied} \sim (\lambda_{Deff}/a)_{crit}^2$  determining  $(\lambda_{Deff}/a)_{crit}$  is critical to POPS performance.

# **Experimental Program**

\* Equilibrium and Stability of Virtual Cathodes.



**INS Device** 

## **INS Device Configured for Virtual Cathode and POPS**



• Emissive Probe Used to Measure Plasma Potential

## Emissive probe for plasma potential measurement

- Made of thoriated tungsten (0.076 mm x 1 cm) in alumina tube (3.2 mm O.D.)
- Better suited than Langmuir probe due to electron beam
- Floating potential of hot probe  $\sim$  plasma potential (within 1-2 V)
- following results are taken from floating potential of hot probe
- May disturb plasma: via ion loss to alumina tube



## Radial Plasma Profile as a function of Gas Pressure

- Low Gas pressure ~ deep potential well (up to 60% of bias voltage)
- Increasing gas pressure ~ smaller well depth, radial asymmetry, bifurcation
- High Gas pressure ~ no well formation



## Electron density profile from plasma potential

 $\bullet$  Low pressure case  $\sim$  low ion density, compared to injected electrons due to low background ionization

- Ignoring n<sub>i</sub>, n<sub>e</sub> can be solved fr om Poisson equation (low n<sub>i</sub> verified later)
- $n_e$  profile from average of 4th order and 6th order polynomial fit of  $\phi_p$
- Off-peak radial density profile: stable profile from fluid dynamics standpoint

• Average electron density in the well  $\sim 3.3 \times 10^6$  cm<sup>-3</sup>, consistent with electron density calculation from circulating current inside middle grid.



# **Profile Results**

## **Theoretical Prediction:**

If  $(\lambda_{\text{Deff}}/a)_{\text{crit}}^2 = 1$  and  $n_e = n_{e0}$  then  $|\phi_{\text{virtual}}| / |\phi_{\text{applied}}| = .143$ 

## **Experimental Observation:**

 $|\phi_{virtual}| / |\phi_{applied}| \sim .6$ 







**Experimental Electron Density Profile** 

• Experimental Profile should be stable

## Bifurcation of Radial Plasma Potential Profile

- Two stable equilibria for radial plasma potential profile
- Deep well: well depth of 50-70 V @120 V bias (note the radial inhomogenity)
- No well: well depth of less than a few voltage
- No bifurcation: low grid voltage (e.g. < 50V)or high grid voltage (e.g. > 120V)



## Hysteresis and Fluctuation of Plasma Potential

- Hysteresis of plasma potential
- Different hysteresis path for different rate of voltage sweep
- Fast process for well disappearance
- vs. slow process for well formation
- Important time scale  $\sim 0.1$ -10 ms

- $\phi_p$  slow fluctuation ~ 100 Hz
- Typically observed in deep well phase but much smaller in no well phase.
- Slow time scale --> ion motion & ionization rate.



## Ion Particle Balance Model (0D)

- Ion source in the well = Ion loss out of the well
- Ion source: ionization of background neutrals (gas pressure dependent)
  - $S_{ion} = n_e n_n < \sigma v_e > V_{well}, \sigma: ionization cross section, v_e: electron velocity, V_{well}: well volume$
- Ion loss: loss to the probe structure + loss out of well due to random thermal motion and well anisotropy
  - $L_{ion} = 0.25*n_i v_i A_{probe} + 0.5*n_i v_i A_{well} \exp(-\Delta V/T_i), v_i: ion velocity, A_{probe}: probe surface area (alumina tube), A_{well}: well surface area, \Delta V: well depth$
- Poission equation:  $6 \Delta V/a^2 \sim q/\epsilon_0 (n_e n_i)$ ,  $a = well radius \sim 1.5$  inch
- Well depth: function of bias voltage and electron injection
- $S_{ion} = L_{ion} -> f(n_i/n_e, n_e, T_i) = n_n$  (after rearranging terms)
- Relevant numbers:
  - $-\sigma \sim 1 \times 10^{-16} \text{ cm}^2$  for 40 100 eV,  $n_n = 3.5 \times 10^{10} \text{ cm}^{-3} \text{ x Pr}$  (Pressure in 10<sup>-6</sup> torr)
  - v<sub>e</sub> ~ 4.2x10<sup>7\*</sup> (V<sub>0</sub>- $\Delta$ V/2)<sup>0.5</sup>, V<sub>0</sub>: bias voltage (100V)
  - $\Delta V \sim 7.8 * (1 n_i/n_e) * n_e (in 10^6 \text{ cm}^3), n_e \sim 5x 10^6 \text{ cm}^3 (\text{from measurement})$

$$v_i \sim 4.9 \times 10^{5*} (\Delta V + T_i)^{0.5}$$

-  $A_{\text{probe}} = 6.3 \text{ cm}^2$  (at the center),  $V_{\text{well}} = 232 \text{ cm}^3$ ,  $A_{\text{well}} = 182 \text{ cm}^2$ 

## Solutions from ion particle balance model

• Graphically solving  $f(n_i/n_e, n_e, T_i) = n_n$ 

- Low pressure: one solution (deep well)
- Medium pressure: 3 solutions (2 stable,

1 unstable), bifurcation between deep well and no well

- High pressure: one solution (no well)
- Consistent with experiments



 Scenario 1: well depth proportional to bias voltage (n<sub>e</sub> increase with bias, not limited by electron injection)

• Scenario 2: well depth limited by electron injections (n<sub>e</sub> = fixed)

• Experiments indicate #2 case --> need to enhance electron injection

#### Difference in well depth model



## Comparison with Experiments

Bifurcation or 3 solutions are seen at center

Potential well exist without ion loss to the probe (r=3.0 inch, outside the well)
Potential well disappears with increasing bias voltage --> electron density limited by injection • Middle grid current ~ electron density (assuming const. grid transparency)

Bifurcation seen by middle grid current

• dI/dV (middle grid) slow above 150V, electron density limited by injection

 Enhanced electron injection --> deeper potential well



# **INS Experiment Summary**

- \* Potential profiles have been measured with an emissive probe
- \* Bifurcated equilibria have been observed (three different states)
- \* Bifurcated equilibria can be understood qualitatively and quantitatively with a simple ionization model.
- \* Wells as deep as 60% of the applied voltage have been observed.
- \* Experimental density profiles are strongly peaked off-axis.
- \* Even though the potential wells are much deeper than expected, theory predicts that the observed density profiles should be stable.
- \* Stability limits of virtual cathode have not yet been tested.

# **The Next Steps**

- Flatten Density Profiles.
  - More focused electron beam from dispenser cathodes.
- Operate with deep well at higher voltages.
  - Pulsed discharges.
  - Ion removal techniques like POPS dumping?
  - More electron density in the well.
- Look for stability limit.
- Look at fluctuation data.
- Look for ion current resonant response at POPS frequency.

# **INS as Neutron Source**



| Parameter           | Present  | IEC Target or Already Proven  |
|---------------------|----------|-------------------------------|
| Neutron Yield (n/s) | $10^{8}$ | $10^{11}$ D-T or $5x10^8$ D-D |
| Lifetime (hours)    | 500      | 10,000                        |
| Operation           | Pulsed   | Pulsed or steady state        |
| Nominal cost \$k    | \$100k   | Same                          |
| Power               | 1kW      | 25 kW                         |



# <section-header>

**INS Device** 



# **Near-Term Applications**

## - Neutron source for "real-time" assay

- \* HEU detection
- \* Nuclear waste assay
- \* Landmine detection
- \* High explosive detection (Unexploded Ordnance)
- \* Drug detection
- \* Chemical and Biological Weapons
- Higher gain applications
  - \* Neutron tomography (imaging for the above)
  - \* Isotope production
  - \* Transmutation of waste
  - \* **Power production (POPS required)**

## **Nuclear Assay Applications**

\* High Explosives Detection (UXO, Landmines, Chemical Weapons Dispersant, "Suitcase Sniffers", Truck Bombs, etc.)

-  $H^2 + H^3 \rightarrow He^4 + n (14.1 \text{ MeV})$  (fusion reaction) -  $N^{14} + n \rightarrow N^{15} + \gamma (10.8 \text{ MeV})$ 

#### \* Special Nuclear Materials Detection

| - | $H^2 + H^3 \rightarrow He^4 + n (14.1 \text{ MeV})$ (fusion reaction)    |
|---|--------------------------------------------------------------------------|
| - | $U^{235} + n \rightarrow fp + 3n$ (fission and neutron multiplication or |
|   | delayed neutrons)                                                        |

#### \* Spent Fuel Assay

| - | $H^2 + H^3 \rightarrow He^4 + n (14.1 \text{ MeV})$ (fusion reaction)   |
|---|-------------------------------------------------------------------------|
| - | $U^{235} + n \rightarrow fp + 3n$ (fission and neutron multiplication)  |
| - | $Pu^{239} + n \rightarrow fp + 3n$ (fission and neutron multiplication) |

#### \* Sarin Detection

\_



- $H^{2} + H^{3} → He^{4} + n$  (14.1 MeV) (fusion reaction)  $P^{31} + n → P^{32} + γ$  (7.93 MeV)  $F^{19} + n → F^{20} + γ$  (6.60 MeV)  $P^{32} → S^{32} + e^{-}$  (1.17 MeV)
- $F^{20} \rightarrow Ne^{20} + e^{-} (5.40 \text{ MeV})$

# **Nuclear Assay Applications cont.**

\* VX



- $\begin{array}{l} H^{2} + H^{3} \rightarrow He^{4} + n \ (14.1 \ MeV) \ (fusion \ reaction) \\ N^{14} + n \rightarrow N^{15} + \gamma \ (10.8 \ MeV) \\ P^{31} + n \rightarrow P^{32} + \gamma \ (7.93 \ MeV) \\ S^{32} + n \rightarrow S^{33} + \gamma \ (8.64 \ MeV) \\ P^{32} \rightarrow S^{32} + e^{-} \ (1.17 \ MeV) \end{array}$
- Chlorine \*



 $\begin{array}{l} H^2 + H^3 \rightarrow He^4 + n \ (14.1 \ MeV) \ (fusion \ reaction) \\ Cl^{35} + n \rightarrow Cl^{36} + \gamma \ (7.97 \ MeV) \end{array}$ 

# **Nuclear Assay Applications cont.**

\* Mustard gas



- $\begin{array}{l} H^2 + H^3 \rightarrow He^4 + n \ (14.1 \ MeV) \ (fusion \ reaction) \\ S^{32} + n \rightarrow S^{33} + \gamma \ (8.64 \ MeV) \\ Cl^{35} + n \rightarrow Cl^{36} + \gamma \ (7.97 \ MeV) \end{array}$
- Cyanide \*



$$\begin{split} &H^2+H^3 \rightarrow He^4 + n \; (14.1 \; MeV) \quad (fusion \; reaction) \\ &N^{14}+n \rightarrow N^{15} + \gamma \; (10.8 \; MeV) \end{split}$$

#### **Biological Weapons (Anthrax, Small Pox, etc.)** \*

 $H^2 + H^3 \rightarrow He^4 + n (14.1 \text{ MeV})$  (fusion reaction) \_ n + processing chemicals  $\rightarrow$  processing chemicals +  $\gamma$ \_

# Conclusions

- Potential profiles have been measured on INS-e with an emissive probe and compared with theoretical stability predictions.
- So far there is good agreement between theory and experiment, but the stability limits have not yet been accessed experimentally.
- Next Steps
  - Flatter Density Profiles.
  - Increase Voltage Operating Window.
  - Look for stability limit.
  - Look at fluctuation data.
  - Look for ion current resonant response at POPS frequency.
- Build a 1x10<sup>11</sup> Ion-based D-T Source.