

Overview of the UW Materials Irradiation Program

Samuel J. Zenobia and the UW IEC Group Presented at the 11th US-Japan IEC Workshop October 13th, 2009

Fusion Technology Institute University of Wisconsin-Madison

- Motivation
 - High voltage performance essential to burning advanced fuels in IEC devices
 - Helium ion damage to IEC grids <u>at high temperature</u> (>800°C) can degrade HV performance
 - ICF: first wall armor; MFE: divertor plates
- Results on polycrystalline W & nano-grain W
- The Materials Irradiation Experiment (MITE-E)
 - Improvements to previous apparatus
 - Conversion of SIGFE ion gun to material application
 - Precise fluence measurement & Nd:Yag laser heating system

G.R. Piefer, "Performance of a Low-Pressure, Helicon Driven IEC 3He Fusion Device" PhD Thesis, University of Wisconsin-Madison, 2006

IEC Cathodes Obtain Significant Surface Damage Within Minutes Of Helium Plasma Exposure

Implanted Grid Diameter PCW: $2x10^{18} D^{+}/cm^{2}$, Fluence Run Time [min]^{*,#} [cm] 1150 °C, and 0.65 Pa $[\text{He}^+/\text{cm}^2]^{\ddagger}$ Transparency $\sim 95\%$ 1018 10 **NOTE:** These effects occur only after exposure to *helium* plasmas! over the entire grid area *Steady-state operation with 30 mA of meter current [#]Ion current (fluence) is calculated assuming a constant SEC, γ , of 2 10 µm Grid diameters and areas are based on the design of UW IEC grids

B.B. Cipiti & G.L. Kulcinski, J. Nucl. Mat. 347, 2005

This will be an issue for ion gun cathode lenses

Evolution Of UW Materials Irradiation Experiments From 2004-2008

- Initial irradiation experiments were performed in the IEC device *HOMER* (B.B. Cipiti, R.F. Radel, and S.J. Zenobia)
- Most recent experiments were performed in the IEC device *HELIOS* (S.J. Zenobia)

Summary Of Polycrystalline W (PCW) And Nano-Grain W (NGW) Implantation Experiments

Irradiation conditions using 30 keV He⁺ in *HELIOS*

PCW	Fluence [He ⁺ /cm ²] Temperature [C]	4x10 ¹⁷ cm ⁻² 1000 <u>+</u> 50 °C	5x10 ¹⁸ cm ⁻² 1000 <u>+</u> 50 °C	
NGW	Fluence [He ⁺ /cm ²]	$10^{18} \mathrm{cm}^{-2}$	$10^{19} \mathrm{cm}^{-2}$	$10^{20}{\rm cm}^{-2}({}^{4}{\rm He}^{+})$
	Temperature [C]	1050 <u>+</u> 50 °C	1000 <u>+</u> 50 °C	1000 <u>+</u> 50 °C

- Scanning electron microscopy (SEM) & focused ion beam (FIB) milling analyses were performed to diagnose surface morphology change
- Pre- & post- irradiation masses were measured to determine the extent of mass loss
- Retained helium fluence was measured using ³He(d,p)⁴He nuclear reaction analysis (NRA) at the UW 1.7 MV tandem accelerator facility

Polycrystalline W Implanted With ³He⁺ Shows Extensive Morphology Changes Above 5x10¹⁸ cm⁻² At ~1000 °C

PCW: 4x10¹⁷ cm⁻², 1000 °C, and 0.013 Pa

PCW: 5x10¹⁸ cm⁻², 1000 °C, and 0.013 Pa

Helium Implantation Of Nano-Grain W Also Results In "Coral-Like" Morphology

10¹⁸ cm⁻² @ 1050 °C , ³He⁺

⁰ cm⁻² @) °C, ⁴He⁺

1 µm

Vano-Grain Tungsten

ze ~ 240 nm

8400 mm dense

400 nm

400 nm

- •The range of 30 keV ${}^{3}\text{He}^{+}$ in tungsten is ~73 nm
- •Bubble layer depth increases with increased fluence
- •The bubble layer ends abruptly, indicating growth is not purely diffusion dominated

Decoupling Material Irradiation Parameters & Response From The IEC Environment

- HOMER/HELIOS constraints:
 - Interdependence of temperature, current, and voltage
 - Limited energy range to $\leq 30 \text{ keV}$
 - Unable to achieve temperatures below ~800°C
 - Limited ability to examine low fluences ($\leq 10^{17} \text{ cm}^{-2}$)
 - Uncertain ion current to irradiated specimens
 - Difficult to achieve precise fluence scans
 - Examination of dose rate effects not possible
- *MITE-E decouples these parameters allowing for more dynamic experimentation*

Water Cooling & 15 kV Feedthrus

Vacuum Vessel & Ion Gun

Laser Housing

MITE-E

200 kV Feedthru and Fiber Optic Current Signals

Ion Gun Power Supplies

Conversion Of SIGFE Ion Gun Technology For Materials Implantation Experiments

Sample Current Measured By Optical Signal Transmission Directly From 200 kV Feedthru

Specimen Heating Provided By A CW Nd:YAG Fiber Laser

- Power: 0 20 W
- $\lambda_{\text{Nd:YAG}}$: 1064 nm
- Beam size: 2.2 mm
- Pyrometer: 400 3000 °C

- Helium ion damage is a critical issue for IEC cathodes and also ICF and MFE applications
 - Resultant "coral-like" morphology degrades HV performance
 - Every W species implanted with He⁺ at high temperature has sustained surface damage
- MITE-E enhances characterization of materials through improved measurement and experiment control
 - Conversion of SIGFE ion gun technology to a materials application
 - Precise fluence measurement and the Nd:Yag laser heating system

