

Fusion Technology Institute

Status of CAD/MCNP 3-D Analysis

Paul Wilson for UW-Madison Fusion Neutronics Team April 27, 2006

UW-Madison Fusion Neutronics Team

L. El-Guebaly
M. Sawan

Nuclear Design & Analysis

(B. Smith)

G. Sviatoslavsky

(P. Phruksarojanakun)

D. Henderson

B. Kiedrowski

P. Wilson

3-D Geometry Capability Enhancements

Radiation Transport

& Effects Code

(R. Slaybaugh)

Development

T. Tautges (SNL)

Overview

- Code history & status
- Feature assessment
- Experience with ITER Benchmark
- ARIES-CS neutronics
- Issues in solid modeling

MCNP(X)-CGM History

- 2001 began implementation of CGM in MCNPX v2.1.5
- 6/2004 Proof-of-principle complete (50-100x performance penalty)
- 3/2005 Oriented bounding box technology with faceted surface intersections implemented (3-12x performance penalty)
- 4/2005 Analysis of ARIES-CS neutron transport on complex surfaces

MCNP(X)-CGM Development Plan & Progress

- Upgrade to newest versions of MCNP(X)
- Upgrade to MCNPX <u>v2.5.0</u> complete
 - MCNP compatibility enhancement
 - Forced collision variance reduction
 - Reflecting boundary conditions
 - Surface flux tally
 - Features added
 - Elimination of fatal errors from cell and surface definitions
 - Elimination of surface definitions entirely
 - Ability to define reflecting boundary conditions in CAD geometry file

MCNP(X) Compatibility

Geometry

- Cell volume/Surface areas functional
- Boundary conditions
 - Specular reflection functional
 - White reflection functional
 - Periodic near term
- Lattice/universe long term

Source

- Fixed source functional
- Fission source testing
- Surface source write/read long term

MCNP(X) Compatibility

- Variance Reduction
 - Cell importance functional
 - Exponential transform functional
 - Forced collision functional
 - Weight windows (cell-based) testing
 - Weight windows (mesh-based) functional
 - Detector tallies functional

MCNP(X) Compatibility

Tallies

- Surface current (type 1) functional
 - Cosine bins functional (directional ambiguity)
- Surface flux (type 2) functional
- Cell flux (type 4,6,7) functional
- Pulse height (type 8) testing
- Point detector (type 5) functional
- Mesh tallies functional in MCNPX
 - Note: MCNP and MCNPX have different mesh tally implementations
- Cell flagging functional
- Surface flagging functional
- Multipliers functional
- Segmenting long term ??

CGM-related Enhancements

CAD/Cubit definition of materials – near term

CAD/Cubit definition of tallies – long term

 Further geometry-based performance enhancements

ITER Model

- 40° toroidal segment
- Source defined on 40x40 R-Z grid
- 774 volumes
- 18116 surfaces

Neutron Wall Loading

Neutron Wall Loading

3D Neutronics for ARIES-CS

- Neutron wall loading
 - Previous work demonstrated capability BUT
 - Used incorrect interpretation of n-source distribution
 - Enhanced geometry capability drives enhanced nsource definition
 - NWL will be calculated on surfaces offset from plasma surface by 5 cm and 20 cm

3D Neutronics for ARIES-CS

- Nuclear analysis of 3-D ARIES-CS design
 - Including standard fusion power plant components

Important to properly develop CAD models

CAD Issues Requiring "Repair"

Human effort shifts from traditional MCNP model creation to CAD/Solid Model repair

- Overlapping Volumes (i.e.: clashes)
- Mating surfaces not contacting
- Slight "Misalignment"
 - Imprint generates ultra thin surfaces
 - Doesn't always require repair
- Complex Surface Definition

Examples of Typical CAD Issues and Typical Repairs

Overlapping Volumes

Mating Surfaces Not Contacting

Fusion Technology Issue – No Contact Action – Edit geometry to establish proper contact

Institute

Misalignment

Issue – misalignment causes imprint difficulty and therefore no merge

Misalignment

Issue – Slight Edge Misalignment

Action – MAY require recreating volume

Complex Surface Definition

Issue – definition of neighboring complex surfaces differ slightly, preventing surfaces from merging

Action – Recreate geometry and/or "Unify" neighboring volumes into a single volume.

Eomplex Surfaces & Misalignment

Institute

Distribution of Repair Efforts

04/27/2006

Improving the Process

- Direct Link to CATIA (or appropriate modeler) data eliminating possible translation issues.
- Work with original ITER data simplification process may have introduced errors
- Tighten design process to minimize "designerintroduced" issues
- Leverage prior work via configuration control allowing future model revisions to address only those area that have changed.

Paul Wilson wilson@engr.wisc.edu 608-263-0807