A Study of the Effects of Source Sampling Methods on ARIES-RS NWL Profiles

R.N. Slaybaugh, E.P. Marriott, P.P.H. Wilson, L. El-Guebaly Contributors: C. Kessel (PPPL), X. Wang (UCSD)

ARIES Pathways Project 05/29/08

roduced by University Communica

- Introduction
- Past NWL Work (in 1996) with approximate neutron source distribution
- Present Work with exact neutron source distribution
- Comparison with DAGMC
- Results
- Recommendations
- Publications

ARIES Pathways Project Impact of Source Sampling on NWL Profile 05/29/08

Parameter	Interim (Jan '96)	Final (Aug '96)
Power	1881.5 MW	2167 MW
Major Radius	5.12 m	5.52 m
Minor Radius	1.28 m	1.38 m
Magnetic Shift	55 cm	33 cm
Peak NWL (midplane)	5.3 MW/m ²	5.6 MW/m ² (from ACS)

*El-Guebaly, L.A., The ARIES Team. "Overview of ARIES-RS neutronics and radiation shielding: key issues and main conclusions." *Fusion Engineering and Design* 38. (1997) : 139-158 ARIES Pathways Project

Impact of Source Sampling on NWL Profile

05/29/08

Introduction

- We reexamined the NWL for ARIES-RS
- Different source sampling methods were used
 - Effect on NWL
 distribution is analyzed
- FW segmented vertically (every 10-20 cm) to improve accuracy

ARIES-RS cross section view with structural detail

Fig. 1. Vertical cut through ARIES-RS showing the latest divertor configuration.

ARIES-RS cross section view with wall segmenting and 3 source regions shown

ARIES Pathways Project 05/29/08

Impact of Source Sampling on NWL Profile

- Used standard MCNP source definition
- 3 regions were created in the plasma zone
- They were weighted to represent the actual source distribution, provided by C. Bathke
- Each region was sampled uniformly
- Angular distribution was isotropic

Fig. 2. Poloidal variation of neutron wall loading.

NWL results from 1997 report

ARIES Pathways Project 05/29/08

Impact of Source Sampling on NWL Profile

- For interim ARIES-RS design, NWL was computed using 3 source distributions:
 - one uniformly sampled region (basic)
 - 3 uniformly sampled regions (this is what was done before)
 - Sampling of actual source distribution provided by C. Kessel
- These results will be compared to assess the accuracy of each method.

- Plasma parameters provided by C. Kessel
 - Provided on R-Z grid in standard output format from plasma physics simulation
- Generate a source density distribution on R-Z grid, S(R,Z)
- Source probability density function (PDF) derived by volume weighting

 $-PDF = 2\pi R^* dR^* dZ^* S(R,Z)$

 Cumulative distribution function is created by summing over R and Z

- Source mesh cell is selected by:
 - Linear search through Z from distribution function
 - Linear search through R from distribution function
 - Toroidal angle is sampled randomly from a uniform distribution
- The source mesh cell is then sampled uniformly in volume; the size is obtained from the R-Z grid
- The source is emitted isotropically

ARIES Pathways Project Impact of Source Sampling on NWL Profile

Comparison of Inboard NWL results by source, native geometry

ARIES Pathways Project 05/29/08

Impact of Source Sampling on NWL Profile

Results

Comparison of Outboard NWL results by source, native geometry

ARIES Pathways Project 05/29/08

Impact of Source Sampling on NWL Profile

Comparison of Divertor NWL results by source, native geometry

ARIES Pathways Project 05/29/08

- Calculations repeated with DAGMCNPX
 - Previous results used "native" MCNP geometry
- DAGMCNPX was developed at UW and performs transport directly on the CAD geometry file
- The results from the native and DAGMCNPX geometries will be compared

05/29/08

Comparison of DAGMC and native geometry for Inboard NWL , actual source

05/29/08

Comparison of DAGMC and native geometry for Outboard NWL , actual source

05/29/08

Comparison of DAGMC and native geometry for Divertor NWL , actual source

	one uniform region	3 uniform regions	actual distribution
Peak Inboard Г	3.2 MW/m ²	3.8 MW/m ²	4.1 MW/m ²
Peak Outboard F	4.8 MW/m ²	5.3 MW/m ²	5.3 MW/m ²
Average* Г	3.1 MW/m ²	3.1 MW/m ²	3.1 MW/m ²

	Native Geometry (actual source)	DAGMC (actual soruce)
Peak Inboard Г	4.1 MW/m ²	4.1 MW/m ²
Peak Outboard Г	5.3 MW/m ²	5.3 MW/m ²
Average* Г	3.1 MW/m ²	3.1 MW/m ²

- Source Comparison:
 - Outboard and divertor cases:
 - the 3 region source matched the actual quite well
 - -Inboard case, the 3 region source was
 - $\bullet \sim 8\%$ lower at the midplane
 - shallower curvature, and
 - >10% higher near the top/bottom
- DAGMC comparison:
 - For the actual source, all results within 4%
 - For 3/45 cases with >1% discrepancy had a statistical error of the same magnitude
 - Ssimilar results for both other source types

Recommendations

- The 3 region source captures many of the effects of the real source
- However, due to the slight disagreement for the inboard results (+/- 10%), the actual source should be used
- DAGMC is also an appropriate choice for these kinds of calculations
- Sensitivity to actual source resolution should be studied

ARIES Pathways Project Impact of Source Sampling on NWL Profile 05/29/08

- UWFDM Report: A Study of Effects of Source Sampling Methods on ARIES-RS NWL Profile. R. N. Slaybaugh, E. P. Marriott, P. P. H. Wilson, L. El-Guebaly
- SOFT 2008: R.N. Slaybaugh, P.P.H. Wilson, L. El-Guebaly, E.P. Marriott "A Monte Carlo Sampling Method for an Arbitrary Toroidal Source"