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W Stellarators Offer Unique Features

Wischren and Engineering Challenges
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Advantages:
— Inherently steady-state devices
— No need for large plasma current
— No external current drive
— No risk of plasma disruptions
— Low recirculating power due to absence of current-drive requirements

— No instability and positional control systems.

Challenges:
— Complex geometry
— Maintainability and component replacement
— Highly constrained local shielding areas
— 3-D modeling for nuclear assessment
— Managing large volume of active materials.
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ARIES Compact Stellarator

Study aimed at reducing stellarators’ size by:

— Developing compact configuration with
advanced physics & technology

— Optimizing minimum plasma-coil distance
(A,;,,) through rigorous nuclear assessment.

3 Field Periods Configuration
Average Major Radius 7.75 m
Average Minor Radius 1.7 m
Aspect Ratio 4.5
Fusion Power 2400 MW
Average NWL 2.6 MW/m?
Net Electric Power 1000 MW,
COE ($2004) 78 mills’/kWh
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W ARIES-CS Nuclear Areas of Research
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Radial Build Definition:
— Dimension of all components
— Optimal composition

Neutron Wall Loading Profile:
— Toroidal & poloidal distribution
— Peak & average values

High-Performance

Shielding Module at A .

Activation Issues:
— Activity and decay heat
— Thermal response during
LOCA/LOFA events
— Radwaste classification &
management

Blanket Parameters:
— Dimension
— TBR, enrichment, M|
— Nuclear heat load
— Damage to FW
— Service lifetime

=l

| Radiation Protection:

— Shield dimension & optimal
composition

— Damage profile at shield,
manifolds, VV, and magnets

— Streaming issues

— Workers and public protection




w Nuclear Task Involves Active
wiese  Interaction with many Disciplines
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W Reference Dual-cooled LiPb/FS Blanket

aeres - Selected with Advanced LiPb/S1C as Backup
Breeder Multiplier Structure FW/Blanket Shield VvV
Coolant Coolant Coolant
Internal VV*:
Flibe Be FS Flibe Flibe H,0
LiPb (backup) - SiC LiPb LiPb H,O
LiPb (reference) - FS He/LiPb He H,0
Li,SiO, Be FS He He H,0
External VV#;
LiPb — FS He/LiPb He or H,O He
Li — FS He/Li1 He He

* VV inside magnets.
# VYV outside magnets.
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FW Shape Varies Toroidally and Poloidally:
Challenging 3-D Modeling Problem
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w UW Developed CAD/MCNPX Coupling Approach
sssssssssssss to Model ARIES-CS for Nuclear Assessment
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Only viable approach for ARIES-CS

3-D neutronics modeling.

Geometry and ray tracing in CAD
Radiation transport physics in
MCNPX code.




Toroidal Angle

W Neutron Wall Loading Distribution
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Core Radiation Distribution at FW
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(354 MW Bremsstrahlung radiation )
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W ARIES-CS Requirements Guide

s In-vessel Component Design
Calculated Overall TBR 1.1
Net TBR (for T self-sufficiency) ~1.01
Damage to Structure 200 dpa - advanced FS
(for structural integrity) 3% Burnup - SiC/SiC
Helium Production @ Manifolds and VV 1 He appm
(for reweldability of FS)
S/C Magnet (@ 4 K):
Peak Fast n fluence to Nb,Sn (E_ > 0.1 MeV) 10 n/cm?
Peak Nuclear heating 2 mW/cm?
Peak dpa to Cu stabilizer 6x10-3 dpa
Peak Dose to electric insulator <10 rads
Plant Lifetime 40 FPY
Availability 85%
Operational dose to workers and public <2.5 mrem/h
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W Well-Optimized Blanket & Shield
Protect Vital Components

WISCONSIN (5.3 MW/m? Peak I')
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W High Performance Components at A_. Help

Achieve Compactness, Minimize Major
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Radius, and Enhance Economics

Vacuum Vessel

Ga
35 LiPb & He Manifolds Cm
20 Y S 2
. 28
32 FS-Shield He
2
5 L —Back Wall Tube WC-Shield
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54 || Full Blanket )
| Non-uniform 4
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| Divertor 25
4 FW ]
20 SOL _ =
_______ Plasma

Full Blanket/Shield and Divertor  Non-uniform, Tapered Blanket/Shield

(61%+15%= 76% of FW area)

(24% of FW area)
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w Tritium Breeding Requirement
wezsss Determined Minimum Major Radius
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» Large machines breed more T as non-uniform blanket coverage decreases with R.
e Designs with R < 7.5 m will not provide T self-sufficiency.
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R=7.75 m Reference Design Provides

Wischrian Tritium Self-Sufficiency

MADISON

3-D model includes essential components for TBR:

— Non-uniform and full blanket/shield
— Homogenized: FW/Blanket/BW
Shield
Manifolds
Divertor.

Divertor

Calculated Overall TBR ~ 1.1 2>

. . . Non-uniform
with 70% Li enrichment Blanket

Nuclear Response

Uniform
Blanket

1.2

Shield

—
—

Manifolds

-
o

®Li Enrichment
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Neutron Streaming Through Penetrations
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Compromises Shielding Performance

e 7 types of penetrations:
— 198 He tubes for blanket (32 cm ID)
— 24 Divertor He access pipes (30-60 cm ID)
— 30 Divertor pumping ducts (42 x 120 cm each)
— 12 Large pumping ducts (1 x 1.25 m each)
— 3 ECH ducts (24 x 54 cm each).
— 6 main He pipes - HX to/from blanket (72 cm ID each)
— 6 main He pipes - HX to/from divertor (70 cm ID each)

e  Potential solutions:
—  Local shield behind penetrations
—  He tube axis oriented toward lower neutron source
—  Penetration shield surrounding ducts
—  Replaceable shield close to penetrations
— Avoid rewelding VV and manifolds close to penetrations
— Bends included in some penetrations.
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3-D Assessment of Streaming Through
Wischren Divertor He-Access Pipe
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Blanket/Shield

Slidi Plasma .
1ding Extension

* 3-D analysis indicated neutron attenuation through the
WC shielding plug and inserts is not sufficient to

Blanket

= — Bulk

eliminate streaming problems entirely. Potential “"71§lgierltdill\ el = Shiefld
. . i |l Manifolds
solutions include: N — .
— Avoid rewelding manifolds and VV near pipe A2y e Vesse
: . - . 2 | -
— Colil should be placed at least 40 cm from pipe s Comeeting " | 1| ML Magnet
— Surround pipe end with shield to protect externals. | i e svemiiy :
 Future studies should develop more effective scheme .,

to attenuate streaming neutrons and reduce flux outside
pipes.

* Simple pipe with smaller ID than 60 cm and several
right-angle bends represents better approach,
eliminating massive WC shielding plug and inserts
(170 tons for 24 pipes of ARIES-CS).

Attila 3-D
Model
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W Key Nuclear Parameters

WISCONSIN
Peak NWL 5.3 MW/m?
Average NWL 2.6 MW/m?
Peak to Average NWL 2
Calculated Overall TBR 1.1 with 70% Li enrichment
Net TBR ~1.01
FW/blanket Lifetime 3 FPY
Shield/manifold/VV/magnet Lifetime 40 FPY
Overall Energy Multiplication 1.16
Amin 1.3 m
A 1.8 m

max
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@ Comparison Between Reference and
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WiSCORSN Backup Systems
LiPb/He/FS LiPb/SiC

Calculated Overall TBR 1.1 1.1
FW/blanket lifetime 3 FPY 3.4 FPY
Overall energy multiplication 1.16 1.1
Ny, 42% 56%
Structure unit cost” 103 $/kg 510 $/kg
Blanket/divertor/shield/manifolds cost” $288M $282M
Cost™ of heat transfer/transport system $475M $175M
Pumping power 183 MW, ---
LSA factor 2 1
Cost of Electricity:

Reference design (R=7.75 m) 78 mills/kWh 60 mills/kWh

Full blanket/shield everywhere 87 mills/kWh

*1in 2004 $.

(R=10.1 m)
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Well

| Optimized Radial Build along with

Advanced Physics and Technologies

WISCONSIN Helped Reduce ARIES-CS Dimensions
ARIES-ST
8 Spherical Torus
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5S-CS major radius approaches
that of advanced tokamaks
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Six Stellarator Power Plants Developed
Wistran Worldwide Over Past 25 y

MADISON
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ARIES-CS Compact Stellarator = US

HSR Helias Stellarator Reactor | Germany
FFHR Force Free Helical Reactor Japan
SPPS Stellarator Power Plant Study ' US

US ASRA6C Modular Advanced Stellarator Reactor

US UWTOR-M Modular Stellarator Power Reactor
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calendar year

ARIES-CS
<R>=7.75m
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W ARIES Project Committed to
WiseEre Radwaste Minimization
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Stellarator waste volume dropped by 3-fold
over 25 y study period

* Actual volumes (not compacted, no replacements).
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Highlights of ARIES-CS

weres Safety and Environmental Features

MADISON

Environmental impact:
— Low activation materials with strict impurity control
= minimal long-term environmental impact.
— No high-level waste.
— Minimal radioactive releases” during normal and abnormal operations.

No energy and pressurization threats to confinement barriers (VV and cryostat):

— Decay heat problem solved by design — Chemical energy controlled by design
— Chemical reaction avoided — Overpressure protection system
— No combustible gas generated — Rapid, benign plasma shutdown.

Occupational and public safety:

— No evacuation plan following abnormal events (early dose at site boundary < 1 rem”)
to avoid disturbing public daily life.

— Low dose to workers and personnel during operation and maintenance activity
(< 2.5 mrem/h").

— Public safety during normal operation (bio-dose << 2.5 mrem/h") and following credible
accidents:

e [External events (seismic, hurricanes, tornadoes, etc.).
* LOCA, LOFA, LOVA, and by-pass events.

# Such as T, volatile activated structure, corrosion products, and erosion dust. Or, from liquid and gas leaks.
* 1 rem (= 10 m Sv) accident dose stated in Fusion Safety Standards, DOE report, DOE-STD-6002-96 (1996).
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m In-vessel Components Exhibit Structural
e Integrity during LOCA/LOFA Event
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First Wall
————— LiPb-1
Mid Blanket Vacuum Vessel
; 800 T T I T T T
10 S e e e 740 C Temp Limit

F | i i i | 3 ] 700 .

e 600 -

;;: $ 500 -
; o
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Time After Shutdown (s) 0 U » - —— ‘ ]
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Time (s)
e Design Base Accident scenario: He LOCA and LiPb LOFA in all modules
and water LOFA in VV.

» Plasma stays on for 3 seconds after onset of LOCA/LOFA.
e Peak FW temperature remains below 740°C — reusability limit for ferritic steel.
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Radwaste Management Approach
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e Three options examined:
— Disposal in repositories: LLW (WDR < 1)
— Recycling — reuse within nuclear facilities (dose < 10,000 Sv/h)

— Clearance — release slightly-radioactive materials to commercial market
if CI < 1.

e Lack of geological repositories and tighter environmental controls will force
fusion designers to promote recycling and clearance, avoiding disposal”

= minimize radwaste burden for future generations.

e There’s growing international effort in support of this new trend.

* L. El-Guebaly, “Recent Trend in Managing Fusion Radwaste: Recycling and Clearance, Avoiding Disposal,”
2008 US/J Workshop, Thursday March 6 @ 9:50 AM.
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W Conclusions
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Nuclear assessment received considerable attention during ARIES-CS design process.

First time ever complex stellarator geometry modeled for nuclear assessment using UW
newly developed CAD/MCNPX coupling approach.

Radial build satisfies design requirements in terms of breeding sufficient tritium and
shielding vital components.

Novel shielding approach developed for ARIES-CS helped reduce radial standoff by
40%, major radius by 30%, and overall cost by 10%.

ARIES-CS demonstrates adequate performance in several safety and environmental
areas.

Successful integration of well-optimized radial build into final design, along with
carefully selected engineering parameters and overarching safety and environmental
constraints, delivered attractive and truly compact stellarator power plant.
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