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Stellarators Offer Unique Features
and Engineering Challenges

Advantages:
– Inherently steady-state devices
– No need for large plasma current
– No external current drive
– No risk of plasma disruptions
– Low recirculating power due to absence of current-drive requirements
– No instability and positional control systems.

Challenges:
– Complex geometry
– Maintainability and component replacement
– Highly constrained local shielding areas
– 3-D modeling for nuclear assessment
– Managing large volume of active materials.
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ARIES Compact Stellarator

3 Field Periods Configuration
Average Major Radius 7.75 m
Average Minor Radius 1.7 m
Aspect Ratio 4.5
Fusion Power 2400 MW
Average NWL 2.6 MW/m2

Net Electric Power 1000 MWe

COE ($2004) 78 mills/kWh

Study aimed at reducing stellarators’ size by:
– Developing  compact configuration with

advanced physics & technology
– Optimizing minimum plasma-coil distance

(Δmin) through rigorous nuclear assessment.
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ARIES-CS Nuclear Areas of Research

VV

Blanket

Shield

Magnet

Manifolds

Radial Build Definition:
– Dimension of all components

 – Optimal composition

High-Performance
Shielding Module at Δmin

Neutron Wall Loading Profile:
– Toroidal & poloidal distribution

 – Peak & average values

Blanket Parameters:
– Dimension
– TBR, enrichment, Mn

 – Nuclear heat load
– Damage to FW
– Service lifetime

Radiation Protection:
– Shield dimension & optimal

composition
– Damage profile at shield,

manifolds, VV, and magnets
– Streaming issues
– Workers and public protection

Activation Issues:
– Activity and decay heat
– Thermal response during

LOCA/LOFA events
– Radwaste classification &

management
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Nuclear Task Involves Active
Interaction with many Disciplines

1-D Nuclear Analysis
(∆min, TBR, Mn, damage, lifetime)

Activation Assessment
(Activity, decay heat, LOCA/LOFA, 

Radwaste classification)

3-D Neutronics
(Overall TBR, Mn)

Radial Build Definition
@ ∆min and elsewhere

(Optimal dimension and composition,
blanket coverage, thermal loads )

NWL Profile
(Γ peak, average, ratio)

Prelim. Physics
(R, a, Pf, ∆min, plasma 
contour, magnet CL)

Design
Requirements

no ∆min match

or insufficient breeding

Init. Divertor
Parameters

Init. Magnet
Parameters

Blanket Concept

Systems Code
(R, a, Pf)

CAD Drawings

Safety Analysis

Blanket Design
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Reference Dual-cooled LiPb/FS Blanket
Selected with Advanced LiPb/SiC as Backup

Breeder Multiplier Structure FW/Blanket Shield VV
Coolant Coolant Coolant

Internal VV*:
Flibe Be FS Flibe Flibe H2O

LiPb (backup) – SiC LiPb LiPb H2O

LiPb (reference) – FS He/LiPb He H2O

Li4SiO4  Be FS He He H2O

External VV#:
LiPb – FS He/LiPb He or H2O He

 
Li – FS He/Li He He

________________
 *  VV inside magnets.
 #  VV outside magnets.
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FW Shape Varies Toroidally and Poloidally:
Challenging 3-D Modeling Problem
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UW Developed CAD/MCNPX Coupling Approach
to Model ARIES-CS for Nuclear Assessment

• Only viable approach for ARIES-CS
3-D neutronics modeling.

• Geometry and ray tracing in CAD
• Radiation transport physics in

MCNPX code.

CAD geometry engine
Monte Carlo

methodRay object
intersection

       CAD based Monte Carlo Method

  CAD geometry file Neutronics
input file
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Neutron Wall Loading Distribution
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Core Radiation Distribution at FW
(354 MW Bremsstrahlung radiation )
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ARIES-CS Requirements Guide
In-vessel Component Design

Calculated Overall TBR   1.1
Net TBR (for T self-sufficiency) ~1.01
   

Damage to Structure 200  dpa - advanced FS
   (for structural integrity) 3% Burnup – SiC/SiC

Helium Production @ Manifolds and VV 1 He appm
   (for reweldability of FS)

S/C Magnet (@ 4 K):
    Peak Fast n fluence to Nb3Sn (En > 0.1 MeV) 1019 n/cm2

 Peak Nuclear heating 2 mW/cm3

    Peak dpa to Cu stabilizer 6x10-3 dpa
Peak Dose to electric insulator < 1011 rads

Plant Lifetime 40 FPY

Availability 85%

Operational dose to workers and public < 2.5 mrem/h
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Well-Optimized Blanket & Shield
Protect Vital Components

(5.3 MW/m2 Peak Γ)
Replaceable FW/Blkt/BW Thickness
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High Performance Components at Δmin Help
Achieve Compactness, Minimize Major

Radius, and Enhance Economics

|
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Tritium Breeding Requirement
Determined Minimum Major Radius

• Large machines breed more T as non-uniform blanket coverage decreases with R.
• Designs with R < 7.5 m will not provide T self-sufficiency.
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R=7.75 m Reference Design Provides
Tritium Self-Sufficiency

3-D model includes essential components for TBR:
– Non-uniform and full blanket/shield
– Homogenized: FW/Blanket/BW

Shield
Manifolds
Divertor.

Non-uniform
Blanket

 Uniform
 Blanket

 Shield

  Manifolds

Divertor

Calculated Overall TBR ~ 1.1 
with 70% Li enrichment
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Neutron Streaming Through Penetrations
Compromises Shielding Performance

• 7 types of penetrations:
– 198 He tubes for blanket (32 cm ID)
– 24 Divertor He access pipes (30-60 cm ID)
– 30 Divertor pumping ducts (42 x 120 cm each)
– 12 Large pumping ducts (1 x 1.25 m each)
– 3 ECH ducts (24 x 54 cm each).
– 6 main He pipes - HX to/from blanket  (72 cm ID each)
– 6 main He pipes - HX to/from divertor (70 cm ID each)

• Potential solutions:
– Local shield behind penetrations
– He tube axis oriented toward lower neutron source
– Penetration shield surrounding ducts
– Replaceable shield close to penetrations
– Avoid rewelding VV and manifolds close to penetrations
– Bends included in some penetrations.
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3-D Assessment of Streaming Through
Divertor He-Access Pipe

• 3-D analysis indicated neutron attenuation through the
WC shielding plug and inserts is not sufficient to
eliminate streaming problems entirely. Potential
solutions include:

– Avoid rewelding manifolds and VV near pipe
– Coil should be placed at least 40 cm from pipe
– Surround pipe end with shield to protect externals.

• Future studies should develop more effective scheme
to attenuate streaming neutrons and reduce flux outside
pipes.

• Simple pipe with smaller ID than 60 cm and several
right-angle bends represents better approach,
eliminating massive WC shielding plug and inserts
(170 tons for 24 pipes of ARIES-CS).

~ 6 m

Attila 3-D
Model

Plasma Blanket/Shield
Extension

WC Shield
Plug

WC Shielding
Insert

Blanket

Vacuum 
Vessel

Magnet

Sliding
Seal

Manifolds

Bulk
Shield

Ribs Connecting
Inner Tube, Shielding

Plug and inserts
into Single Assembly
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Key Nuclear Parameters

Peak NWL 5.3 MW/m2

Average NWL 2.6 MW/m2

Peak to Average NWL 2

Calculated Overall TBR 1.1 with 70% Li enrichment
Net TBR ~1.01

   
FW/blanket Lifetime 3 FPY

Shield/manifold/VV/magnet Lifetime 40 FPY  

Overall Energy Multiplication 1.16

Δmin 1.3 m
Δmax 1.8 m
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Comparison Between Reference and
Backup Systems

LiPb/He/FS LiPb/SiC

Calculated Overall TBR 1.1 1.1
FW/blanket lifetime 3 FPY 3.4 FPY
Overall energy multiplication 1.16 1.1
ηth 42% 56%

Structure unit cost* 103 $/kg 510 $/kg
Blanket/divertor/shield/manifolds cost* $288M $282M
Cost* of heat transfer/transport system $475M $175M
Pumping power 183 MWe ---
LSA factor 2 1
Cost of Electricity*:
        Reference design  (R=7.75 m) 78 mills/kWh 60 mills/kWh
        Full blanket/shield everywhere 87 mills/kWh
                                      (R=10.1 m)     

_________

* in 2004 $.
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Well Optimized Radial Build along with
Advanced Physics and Technologies

 Helped Reduce ARIES-CS Dimensions

ARIES-CS major radius approaches
that of advanced tokamaks
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Six Stellarator Power Plants Developed
Worldwide Over Past 25 y

US

US

US

Japan

Germany

US

UWTOR-M
<R>= 24 m

ASRA-6C
<R>= 20 m

SPPS
<R>= 14 m

HSR
<R>= 18 m

FFHR
<R>= 14 m

ARIES-CS
<R>= 7.75 m
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ARIES Project Committed to
Radwaste Minimization

Stellarator waste volume dropped by 3-fold
over 25 y study period

_____________________
* Actual volumes (not compacted, no replacements).

0

1

2

3

4

5

6

7

8

B
la

n
ke

t/
S

h
ie

ld
/V

ac
u

u
m

 V
es

se
l/M

ag
n

et
/S

tr
u

ct
u

re
 

V
o

lu
m

e 
(1

03  m
3 )

UWTOR-M
24 m
1982

SPPS
14 m
1994

ARIES-CS
 8.25 m

2004

V FS

FS

ARIES-CS
 7.75 m

2006

FS

FS

ASRA-6C
20 m
1987



23

Highlights of ARIES-CS
Safety and Environmental Features

Environmental impact:
– Low activation materials with strict impurity control
               ⇒  minimal long-term environmental impact.
– No high-level waste.
– Minimal radioactive releases# during normal and abnormal operations.

No energy and pressurization threats to confinement barriers (VV and cryostat):
– Decay heat problem solved by design –   Chemical energy controlled by design
– Chemical reaction avoided –   Overpressure protection system
– No combustible gas generated –   Rapid, benign plasma shutdown.

Occupational and public safety:
– No evacuation plan following abnormal events (early dose at site boundary < 1 rem*)

to avoid disturbing public daily life.
– Low dose to workers and personnel during operation and maintenance activity

(< 2.5 mrem/h*).
– Public safety during normal operation (bio-dose << 2.5 mrem/h*) and following credible

accidents:
• External events (seismic, hurricanes, tornadoes, etc.).
• LOCA, LOFA, LOVA, and by-pass events.

______________________________
#  Such as T, volatile activated structure, corrosion products, and erosion dust. Or, from liquid and gas leaks. 
*  1 rem (= 10 m Sv) accident dose stated in Fusion Safety Standards, DOE report, DOE-STD-6002-96 (1996).
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In-vessel Components Exhibit Structural
Integrity during LOCA/LOFA Event
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Radwaste Management Approach

• Three options examined:
– Disposal in repositories:  LLW (WDR < 1)

– Recycling  –  reuse within nuclear facilities (dose < 10,000 Sv/h)

– Clearance –  release slightly-radioactive materials to commercial market
                              if CI < 1.

• Lack of geological repositories and tighter environmental controls will force
fusion designers to promote recycling and clearance, avoiding disposal*

                 ⇒   minimize radwaste burden for future generations.

• There’s growing international effort in support of this new trend.

______________________________
*  L. El-Guebaly, “Recent Trend in Managing Fusion Radwaste: Recycling and Clearance, Avoiding Disposal,”
    2008 US/J Workshop, Thursday March 6 @ 9:50 AM.
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Conclusions

• Nuclear assessment received considerable attention during ARIES-CS design process.

• First time ever complex stellarator geometry modeled for nuclear assessment using UW
newly developed CAD/MCNPX coupling approach.

• Radial build satisfies design requirements in terms of breeding sufficient tritium and
shielding vital components.

• Novel shielding approach developed for ARIES-CS helped reduce radial standoff by
40%, major radius by 30%, and overall cost by 10%.

• ARIES-CS demonstrates adequate performance in several safety and environmental
areas.

• Successful integration of well-optimized radial build into final design, along with
carefully selected engineering parameters and overarching safety and environmental
constraints, delivered attractive and truly compact stellarator power plant.
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