

Integration of Nuclear, Economics, and Safety Constraints in ARIES-CS Compact Stellarator

L. El-Guebaly¹,

P. Wilson¹, D. Henderson¹, T. Tautges¹, M. Sawan¹, G. Sviatoslavsky¹,
B. Kiedrowski¹, R. Slaybaugh¹, A. Ibrahim¹, M. Wang¹, C. Martin¹,
R. Raffray, S. Malang, J. Lyon, L.P. Ku, X. Wang, L. Bromberg,
B. Merrill, L. Waganer, F. Najmabadi,
and the ARIES-CS Team

¹Fusion Technology Institute University of Wisconsin - Madison http://fti.neep.wisc.edu/UWNeutronicsCenterOfExcellence

US/J Workshop on Fusion Power Plants and Related Advanced Technologies March 5-7, 2008

Stellarators Offer Unique Features and Engineering Challenges

Advantages:

- Inherently steady-state devices
- No need for large plasma current
- No external current drive
- No risk of plasma disruptions
- Low recirculating power due to absence of current-drive requirements
- No instability and positional control systems.

Challenges:

- Complex geometry
- Maintainability and component replacement
- Highly constrained local shielding areas
- 3-D modeling for nuclear assessment
- Managing large volume of active materials.

ARIES Compact Stellarator

Study aimed at reducing stellarators' size by:

- Developing <u>compact</u> configuration with advanced physics & technology
- Optimizing minimum plasma-coil distance (Δ_{\min}) through rigorous nuclear assessment.

3 Field Periods Configuration

Average Major Radius	7.75 m
Average Minor Radius	1.7 m
Aspect Ratio	4.5
Fusion Power	2400 MW
Average NWL	2.6 MW/m²
Net Electric Power	1000 MW _e
COE (\$2004)	78 mills/kWh

ARIES-CS Nuclear Areas of Research

Reference Dual-cooled LiPb/FS Blanket Selected with Advanced LiPb/SiC as Backup

Breeder	<u>Multiplier</u>	<u>Structure</u>	<u>FW/Blanket</u> <u>Coolant</u>	Shield Coolant	<u>Coolant</u>
Internal VV [*] :					
Flibe	Be	FS	Flibe	Flibe	H ₂ O
LiPb (backup)	-	SiC	LiPb	LiPb	H ₂ O
LiPb (reference)	-	FS	He/LiPb	Не	H ₂ O
Li ₄ SiO ₄	Be	FS	He	He	H ₂ O
External VV [#] :					
LiPb	_	FS	He/LiPb	He or H_2O	He
Li	_	FS	He/Li	He	He

* VV inside magnets.

VV outside magnets.

FW Shape Varies Toroidally and Poloidally: Challenging 3-D Modeling Problem

7

UW Developed CAD/MCNPX Coupling Approach to Model ARIES-CS for Nuclear Assessment

- Only viable approach for ARIES-CS
 3-D neutronics modeling.
- Geometry and ray tracing in CAD
- Radiation transport physics in MCNPX code.

Neutron Wall Loading Distribution

Peak NWL

Peak/Ave. NWL = 2

9

Core Radiation Distribution at FW

(354 MW Bremsstrahlung radiation)

Peak/Ave. [MW/m ²]	Toroidal Angle (degrees)	Poloidal Angle (degrees)
0.68 / 0.48	-34	-17

ARIES-CS Requirements Guide In-vessel Component Design

Calculated Overall TBR Net TBR (for T self-sufficiency)	1.1 ~1.01	
Damage to Structure (for structural integrity)	200 3%	dpa - advanced FS Burnup – SiC/SiC
Helium Production @ Manifolds and VV (for reweldability of FS)	1	He appm
S/C Magnet (@ 4 K): Peak Fast n fluence to $Nb_3Sn (E_n > 0.1 MeV)$ Peak Nuclear heating Peak dpa to Cu stabilizer Peak Dose to electric insulator	$10^{19} \\ 2 \\ 6x10^{-3} \\ < 10^{11}$	n/cm ² mW/cm ³ dpa rads
Plant Lifetime	40	FPY
Availability	85%	
Operational dose to workers and public	< 2.5	mrem/h

Well-Optimized Blanket & Shield Protect Vital Components (5.3 MW/m² Peak Γ)

High Performance Components at Δ_{min} Help Achieve Compactness, Minimize Major Radius, and Enhance Economics

Tritium Breeding Requirement Determined Minimum Major Radius

- Large machines breed more T as non-uniform blanket coverage decreases with R.
- Designs with R < 7.5 m will not provide T self-sufficiency.

R=7.75 m Reference Design Provides Tritium Self-Sufficiency

Neutron Streaming Through Penetrations Compromises Shielding Performance

• 7 types of penetrations:

- 198 He tubes for blanket (32 cm ID)
- 24 Divertor He access pipes (30-60 cm ID)
- 30 Divertor pumping ducts (42 x 120 cm each)
- 12 Large pumping ducts (1 x 1.25 m each)
- 3 ECH ducts (24 x 54 cm each).
- 6 main He pipes HX to/from blanket (72 cm ID each)
- 6 main He pipes HX to/from divertor (70 cm ID each)

• **Potential solutions**:

- Local shield behind penetrations
- He tube axis oriented toward lower neutron source
- Penetration shield surrounding ducts
- Replaceable shield close to penetrations
- Avoid rewelding VV and manifolds close to penetrations
- Bends included in some penetrations.

3-D Assessment of Streaming Through Divertor He-Access Pipe

- 3-D analysis indicated neutron attenuation through the <u>WC shielding plug and inserts is not sufficient to</u> <u>eliminate streaming problems entirely</u>. Potential solutions include:
 - Avoid rewelding manifolds and VV near pipe
 - Coil should be placed at least 40 cm from pipe
 - Surround pipe end with shield to protect externals.
- Future studies should develop more effective scheme to attenuate streaming neutrons and reduce flux outside pipes.
- Simple pipe with smaller ID than 60 cm and <u>several</u> <u>right-angle bends represents better approach</u>, eliminating massive WC shielding plug and inserts (170 tons for 24 pipes of ARIES-CS).

Key Nuclear Parameters

Peak NWL Average NWL Peak to Average NWL	5.3 MW/m ² 2.6 MW/m ² 2
Calculated Overall TBR Net TBR	1.1 with 70% Li enrichment ~1.01
FW/blanket Lifetime	3 FPY
Shield/manifold/VV/magnet Lifetime	40 FPY
Overall Energy Multiplication	1.16
Δ_{\min}	1.3 m
Δ_{\max}	1.8 m

Comparison Between Reference and Backup Systems

	LiPb/He/FS	LiPb/SiC
Calculated Overall TBR	1.1	1.1
FW/blanket lifetime	3 FPY	3.4 FPY
Overall energy multiplication	1.16	1.1
$\mathbf{\eta}_{ ext{th}}$	42%	56%
Structure unit cost*	103 \$/kg	510 \$/kg
Blanket/divertor/shield/manifolds cost*	\$288M	\$282M
Cost* of heat transfer/transport system	\$475M	\$175M
Pumping power	183 MW _e	
LSA factor	2	1
Cost of Electricity [*] :		
Reference design (R=7.75 m)	78 mills/kWh	60 mills/kWh
Full blanket/shield everywhere	87 mills/kWh	
(R=10.1 m)		

^{*} in 2004 \$.

Well Optimized Radial Build along with Advanced Physics and Technologies Helped Reduce ARIES-CS Dimensions

ARIES-CS major radius approaches that of advanced tokamaks

Six Stellarator Power Plants Developed Worldwide Over Past 25 y

calendar year

ARIES Project Committed to Radwaste Minimization

Stellarator waste volume dropped by 3-fold over 25 y study period

^{*} Actual volumes (not compacted, no replacements).

Highlights of ARIES-CS Safety and Environmental Features

Environmental impact:

- Low activation materials with strict impurity control
 - \Rightarrow minimal long-term environmental impact.
- No high-level waste.
- **Minimal radioactive releases**[#] during normal and abnormal operations.

No energy and pressurization threats to confinement barriers (VV and cryostat):

- Decay heat problem solved by design
- Chemical reaction avoided
- No combustible gas generated

- Chemical energy controlled by design
- Overpressure protection system
- Rapid, benign plasma shutdown.

Occupational and public safety:

- No evacuation plan following abnormal events (early dose at site boundary < 1 rem^{*}) to avoid disturbing public daily life.
- Low dose to workers and personnel during operation and maintenance activity $(< 2.5 \text{ mrem/h}^*)$.
- Public safety during normal operation (bio-dose << 2.5 mrem/h^{*}) and following credible accidents:
 - External events (seismic, hurricanes, tornadoes, etc.).
 - LOCA, LOFA, LOVA, and by-pass events.

[#] Such as T, volatile activated structure, corrosion products, and erosion dust. Or, from liquid and gas leaks.

^{* 1} rem (= 10 m Sv) accident dose stated in Fusion Safety Standards, DOE report, DOE-STD-6002-96 (1996).

In-vessel Components Exhibit Structural Integrity during LOCA/LOFA Event

- Design Base Accident scenario: <u>He LOCA</u> and <u>LiPb LOFA</u> in all modules and <u>water LOFA</u> in VV.
- <u>Plasma stays on for 3 seconds</u> after onset of LOCA/LOFA.
- Peak FW temperature remains below 740°C reusability limit for ferritic steel.

Radwaste Management Approach

- Three options examined:
 - Disposal in repositories: LLW (WDR < 1)
 - **Recycling** reuse within nuclear facilities (dose < 10,000 Sv/h)
 - Clearance release slightly-radioactive materials to commercial market if CI < 1.
- Lack of geological repositories and tighter environmental controls will force fusion designers to promote recycling and clearance, avoiding disposal*

\Rightarrow minimize radwaste burden for future generations.

• There's **growing international effort** in support of this new trend.

^{*} L. El-Guebaly, "Recent Trend in Managing Fusion Radwaste: Recycling and Clearance, Avoiding Disposal," 2008 US/J Workshop, Thursday March 6 @ 9:50 AM.

Conclusions

- Nuclear assessment received considerable attention during ARIES-CS design process.
- First time ever complex stellarator geometry modeled for nuclear assessment using UW newly developed CAD/MCNPX coupling approach.
- Radial build satisfies design requirements in terms of breeding sufficient tritium and shielding vital components.
- Novel shielding approach developed for ARIES-CS helped reduce radial standoff by 40%, major radius by 30%, and overall cost by 10%.
- ARIES-CS demonstrates adequate performance in several safety and environmental areas.
- Successful integration of well-optimized radial build into final design, along with carefully selected engineering parameters and overarching safety and environmental constraints, delivered attractive and <u>truly compact stellarator power plant</u>.

Publications

- L. El-Guebaly, R. Raffray, S. Malang, J. Lyon, and L.P. Ku, "Benefits of Radial Build Minimization and Requirements Imposed on ARIES-CS Stellarator Design," Fusion Science & Technology, **47**, No. 3, 432-439 (2005).
- L. El-Guebaly, P. Wilson, D. Henderson, M. Sawan, G. Sviatoslavsky, T. Tautges, R. Slaybaugh, B. Kiedrowski, A. Ibrahim, and The ARIES Team, "Nuclear Challenges and Progress in Designing Stellarator Power Plants," presented at 13th International Conference on Emerging Nuclear Energy Systems, ICENES-2007, Istanbul, Turkey. To be published in Energy Conversion & Management Journal.
- C. Martin and L. El-Guebaly, "ARIES-CS Loss of Coolant and Loss of Flow Accident Analyses," Fusion Science and Technology, **52**, No. 3, 985-989 (2007).
- L. El-Guebaly, P. Wilson, D. Henderson, M. Sawan, G. Sviatoslavsky, T. Tautges, R. Slaybaugh, B. Kiedrowski, A. Ibrahim, C. Martin, and the ARIES-CS team, "Overview of ARIES-CS In-vessel Components: Integration of Nuclear, Economics, and Safety Constraints in Compact Stellarator," Proceedings of 2nd IAEA TM on First Generation of Fusion Power Plants: Design & Technology, June 20 - 22, 2007, Vienna, Austria. Proceedings to be published by IAEA on CD.
- A. Ibrahim, D.L. Henderson, L.A. El-Guebaly, P.P.H. Wilson, and M.E. Sawan, "Assessment of Radiation Streaming Through ARIES-CS He-Access Pipes using Two- and Three-Dimensional Analyses," University of Wisconsin Fusion Technology Institute Report, UWFDM-1331 (Dec. 2007). Available at: http://fti.neep.wisc.edu/pdf/tdm1331.pdf.
- L. El-Guebaly, P. Wilson, D. Henderson et al. "Designing ARIES-CS Compact Radial Build and Nuclear System: Neutronics, Shielding, and Activation," to be published in Fusion Science and Technology.