

Preliminary ARIES-AT-DCLL Radial Build for ASC

L. El-Guebaly UW - Madison

and C. Kessel **PPPL**

ARIES-Pathways Project Meeting

March 3-4, 2008 **UCSD**

Objectives

- Define preliminary radial builds for ARIES-AT-DCLL with:
 - Stabilizing shells
 - LiPb/He Manifolds (<u>tentative</u> composition/dimension/location).

• Highlight impact of DCLL system and stabilizing shells on ARIES-AT engineering and physics.

ARIES-AT Reference Design

Fusion Power 1755 MW

Major Radius 5.2 m Minor Radius 1.3 m

Peak Γ @ IB, OB, Div 3.1, 4.8, 2 MW/m²

SiC/SiC Composite Structure

LiPb/SiC Blanket

Discrete LiPb Manifolds

HT S/C Magnet @ 70-80 K

No W on FW

Calculated Overall TBR 1.1

 η_{th} ~ 60%

Availability 85%

Plasma Control:

5 W Shells on IB and OB

2 Vertical Position Coils

2 Feedback Coils

ARIES-AT Radial Builds: IB, OB, Div (SiC Structure)

TF & PF magnets

Cross section data library

Changes, Updates, and Assumptions

	ARIES-AT-LiPb/SiC (Reference Design)	ARIES-AT-DCLL
Peak NWL @ IB, OB, Div	$3.1, 4.8, 2 \text{ MW/m}^2$	3.1, 4.8, 2 MW/m ² (to be updated)
FS structure	ORNL FS	MF82H FS
LiPb: Li enrichment Average temp Density	90% 700°C 8.8 g/cc	90% or less ~580 °C 9 g/cc
OB blanket	Two segments	One segment
LiPb/He manifolds:	Discrete	Assumed toroidally continuous in OB and Div regions
W shells: Two 4-cm-thick VS shells on IB: (toroidally continuous)	Between IB blanket & shield	Between IB blanket & shield
Two 4-cm-thick VS shells on OB:	Between OB blanket segments	Behind OB blanket
(toroidally continuous) 1-cm-thick RWM shell on OB: (discrete)	Between OB blanket segments	(or use FS cooling channels of blanket) FW could serve as RWM shell
Shield coolant	LiPb	Не
IB Blanket-shield gap	1 cm	
VV model	Homogeneous	Heterogeneous with 2-cm-thick plates

YBCO HT S/C

IAEA FENDL-2

Nb₃Sn LT S/C

IAEA FENDL-2.1

Recommended ARIES-AT-DCLL IB Radial Build

- No LiPb/He Manifolds on IB.
- Upper/lower W Shells located between Blanket & Shield.

Recommended ARIES-AT-DCLL OB Radial Build

(Cross Section through Magnet*)

- 35 cm LiPb/He Manifolds placed behind shield (thickness/composition to be updated by Rene/Siegfried).
- Upper/lower W Shells located between Blanket & Shield.
- Could FW serve as RWM (kink) shell? Thickness? Impact on TBR?

^{*} Cross section between magnet TBD.

Recommended ARIES-AT-DCLL Divertor Radial Build

35 cm LiPb/He Manifolds located behind shield (thickness/composition to be updated by Rene/Siegfried).

Impact of Stabilizing Shell Location on ARIES-AT Physics

- Preliminary assessment on stability and control without much detailed analysis.
- **For vertical stability,** parameters of interest is distance of <u>stabilizing shell</u> from plasma boundary normalized to minor radius (a=1.3 m), **and** growth rate of instability that must be restrained by <u>feedback coils</u> behind shield/manifolds.
- In reference **ARIES-AT**:
 - IB stabilizers d/a = 0.31
 - OB stabilizers d/a = 0.28
 - \Rightarrow Plasma elongation = 2.2 and significant increase in beta
 - ⇒ Feedback coils behind OB shield (@ 96 cm from plasma boundary)
- In **ARIES-AT-DCLL** (assuming shells between blanket and Shield):
 - IB stabilizers d/a = 0.38
 - OB stabilizers d/a = 0.65 < --- too high!
 - \Rightarrow Plasma elongation = 1.5 -1.6 **unacceptable**
 - <u>Assuming</u> feedback coils at same normalized location as in reference ARIES-AT (meaning coils embedded in shield!).
 - Impacts on physics and design of placing feedback coils outside manifolds (@ 140 cm from plasma) need to be assessed.

Impact of Stabilizing Shell Location on ARIES-AT Physics (Cont.)

• **For RWM** (**kink stability**), 3.8 cm FS/He FW (containing 1.3 cm FS) will *probably* be adequate to slow the resistive wall mode down for feedback control.

(Laila:scaling from 2 cm V kink shell of ARIES-RS \Rightarrow ~5 cm FS kink shell

⇒ Breeding problem)

• Steel vs Tungsten Kink Shell:

- Steels have resistivity ~12 times higher than W (and 50 times higher than Cu).
- FS do **not** slow down plasma as efficiently as W.
- This means <u>voltage and power</u> required for feedback system will be **360 MVA** (12 times higher than 30 MVA of reference ARIES-AT).
- 360 MVA is very high regardless of the fact that it is mostly reactive power.

Overall conclusions:

- FS RWM (kink) shell requires very high voltage and power for feedback system (360 MVA).
- 5 cm thick FS RWM shell @ FW degrades TBR significantly. May examine Cu or W shell behind FW.
- Locating vertical stabilizing shell <u>outside OB blanket</u> results in major hit to plasma operating point and is probably <u>unacceptable</u>.
- This assessment <u>assumes same geometry</u> for plasma, which <u>may not be the case</u>.

Impact of Stabilizing Shell Location on ARIES-AT Physics (Cont.)

Feasibility of using FS Cooling Channels for Plasma Stabilization

- Can <u>central</u> cooling channel be modified and connected from module to module (as in ARIES-AT) to create toroidally continuous stabilizing shell?
- If so, d/a = 0.35 for ARIES-CS-DCLL much better than 0.65 for shell outside 80 cm blanket.
- Could modified cooling channel be moved 5 cm inward to attain d/a = 0.31?
- Thickness of steel shell >> thickness of W shell.
- Impact on TBR of modified cooling channel should be assessed.

Observations, Questions, Needed Info

Observations:

- LiPb/He manifolds increase radial standoff and should not be placed at IB.
- Initial assessment indicated unacceptable physics parameters for locating W stabilizing shells outside OB blanket.
- Steel RWM (kink) shell requires very high voltage/power (360 MVA) and fairly thick steel (~5 cm).
 This may not be economically acceptable and will degrade TBR significantly.

Questions:

- Could central 1.5 cm FS/He cooling channel within blanket be modified and connected toroidally to serve as vertical stabilizing shells?
- Does modified cooling channel call for more steel? If yes, more steel will degrade TBR.
- Could feedback coils be embedded in OB shield? If not, impacts on physics and design of placing coils outside manifolds should be assessed.
- Do W, Cu, and FS resistivities increase with neutron fluence? If so, assess impact on shell parameters.

To do:

- Replace HT YBCO TF/PF magnets by LT Nb₃Sn magnet.
- Breeding with < 90% enrichment (for larger breeding margin) will be assessed. It may require fairly thick IB and OB blankets. Impact on stabilizing shells and physics?</p>
- OB radial build for Xn between magnets will be provided.
- IB replaceable shield will be divided into replaceable and permanent components to minimize radwaste stream.
- Boride material will be added to OB VV to reduce magnet heating and activation.
- Penetration shield should surround pumping ducts to limit radiation damage at VV and magnet.
- NWL distribution will be updated using actual neutron source profile within plasma, per Wilson (UW).

Needs:

- Practical solutions for RWM shells, vertical stabilizing shells, and feedback coils.
- Compositions of LT magnets and coil cases.
- Size, composition, and location of manifolds.