

Final Radial Builds for LiPb/FS/He and LiPb/SiC Systems

L. El-Guebaly

Fusion Technology Institute UW - Madison

Contributors:

J. Lyon (ORNL), X. Wang (UCSD), and L. Waganer (Boeing)

ARIES-CS Project Meeting

June 14 - 15, 2006 UCSD

UW Action Items

- $\sqrt{1}$. Revise radial build for 7.75 m case and post it on UW website.
- $\sqrt{2}$. Define local shield behind helium access tubes.
- $\sqrt{3}$. Provide radial build for full blanket coverage and send to J. Lyon.
- $\sqrt{4}$. Define heat load to intercoil structure.
- $\sqrt{5}$. Define size of bioshield.
- $\sqrt{6}$. Provide radial build for advanced LiPb/SiC system.
- 7. Provide **NWL distribution** for R= 7.75 m design (<u>received</u> neutron source profile from J. Lyon and plasma surface and magnetic axis trajectory from L-P Ku).
- 8. Check **NWL** at divertor and assess streaming through divertor He access pipes (need divertor location from UCSD).
- 9. Perform **3-D nuclear analysis** for R= 7.75 m design (need CAD input data from UCSD for all components, including blanket variation, divertor system, SOL variation, and penetrations).
- 10. Provide decay heat for LOCA/LOFA and safety analyses.
- 11. Help define **replacement cost**.
- 12. Provide radial build for **2 FP** configuration (<u>received</u> plasma-midcoil separation contours from L-P Ku).

Blanket Concepts and Key Design Parameters

<u>Breeder</u>	Structure	FW/Blanket Coolant	Shield Coolant	<u>VV</u> <u>Coolant</u>
LiPb (reference)	FS	He/LiPb	He	H_2O
LiPb (back-up)	SiC	LiPb	LiPb	H ₂ O

- 3 FP configuration
- Major Radius = 7.75 m
- Minor Radius = 1.7 m
- $\square_{\min} = 1.3 \text{ m (for both concepts ?)}$
- Peak $\square \approx 4 \text{ MW/m}^2$
- Average $\square \approx 2.6 \text{ MW/m}^2$
- 15% of FW for divertor system
- Internal VV (located inside magnets)
- Port maintenance approach.

R = 7.75 m

[$4 \square_{\min}$ per FP marked with red dots]

- Non-uniform, tapered blanket inside red contour covers ~24% of FW area.
- Uniform blanket and divertor outside red contour covers ~76% of FW area.

CAD should confirm UW coverage estimates

LiPb/FS/He Radial Build

Radial / Toroidal Xn

LiPb/FS/He Compositions and Coverage Fractions

Component	Thickness	Coverage Fraction	Composition
$\mathbf{F}\mathbf{W}^*$	3.8 cm	85% } 100%	34% FS Structure 66% He Coolant
Divertor System*	20 cm	15%	32.6% FS Structure 4.0% W 63.4% He Coolant
Blanket Behind Divertor*	35 cm	15%	75% LiPb (< 90% enriched Li) 9% SiC Inserts 8% FS Structure 8% He Coolant
Non-uniform Blanket*	25 - 54.3 cm	24% > 100%	76% LiPb (< 90% enriched Li) 8% SiC Inserts 8% FS Structure 8% He Coolant
Full Blanket*	54.3 cm	61%	79% LiPb (< 90% enriched Li) 7% SiC Inserts 6% FS Structure 8% He Coolant
Back Wall*	5 cm	100%	80% FS Structure 20% He Coolant
FS Shield	30 cm	76%	15% FS Structure 10% He Coolant 75% Borated Steel Filler
Manifolds	35 cm	80%	52.0% FS Structure 22.7% LiPb (< 90% enriched Li) 24.0% He Coolant
* Replaceable component.		7	1.3% SiC Inserts

LiPb/FS/He Compositions and Coverage Fractions (Cont.)

<u>Component</u>	Thickness	Coverage Fraction	Composition
FS Shield-I*	0 -14 cm	24%	15% FS Structure 10% He Coolant 75% Borated Steel Filler
WC Shield	26 - 34 cm	24%	15% FS Structure 10% He Coolant 75% WC Filler
Vacuum Vessel	28 cm	100%	28% FS Structure 49% Water 23% Borated Steel Filler
Inner Coil Case (in front of WPs only)	2 cm	28%	95% JK2LB Structure 5% LHe Coolant
Winding Pack @ 4K	18 cm	28%	18.5% JK2LB Structure 48.2% Cu 12.8% Nb ₃ Sn 10.0% GFF Polyimide 10.5% LHe Coolant
Strong Back (behind WPs only)	28 cm	28%	95% JK2LB Structure 5% LHe Coolant
Intercoil Structure (between WPs)	20 cm#	72%	95% JK2LB Structure 5% LHe Coolant
Cryostat	5 cm	100%	100% 304-SS
Bioshield Replaceable component.	200 cm	100% ?	85% Concrete 10% Mild Steel 5% He coolant
\sim 16 cm for outboard and \sim 28 cm for inbo	oard, per Xueren.	Q	2.5 110 00014111

⁸

Alternate Design Options

• Uniform LiPb/FS/He blanket everywhere.

• LiPb/SiC blanket with $\Box_{th} = 55 - 63\%$.

Uniform LiPb/FS/He Blanket Everywhere

Main changes:

Full blanket coverage fraction = 85%, assuming divertor covers 15% of FW area.

Full Blanket thickness = 50.3 cm (instead of 54.3 cm)

Blanket behind divertor = 31 cm (instead of 35 cm)

FS shield thickness = 33 cm (instead of 30 cm)

$$R = ?$$

$$COE = ?$$

LiPb/FS/He and LiPb/SiC Blankets Offer Comparable TBR

LiPb/SiC system:

- Expensive SiC/SiC structure (~ \$500/kg).
- Absence of He coolant and He manifolds results in 40 cm thinner radial build.
- Discrete LiPb manifold \(\Bar{\cap} \) no shielding function.
- No He access pipes \square no streaming problems. If $\square_{min} = 1.3$ m, use B-FS filler in SiC-shield-II
- $\square_{min} \sim 1.23$ m with WC filler in SiC-shield-II
- Higher \square_{th} \square smaller machine and lower COE. Light weight SiC structure \square Lower number \square

Lower number of blanket modules

Shorter replacement time

Availability could exceed 85%?

Thin replaceable blanket suitable for FP maintenance approach.

LiPb/SiC Radial Build

(Near-Final)

LiPb/SiC Compositions and Coverage Fractions

Component	Thickness	Coverage Fraction	Composition
FW/Blanket-I*	25 cm	61%	21% SiC/SiC Structure 79% LiPb (< 90% enriched Li)
Blanket-II	25 cm	61%	21% SiC/SiC Structure 79% LiPb (< 90% enriched Li)
Divertor System*	20 ?	15%	33% SiC/SiC Structure ? 4% W 63% LiPb (< 90% enriched Li)
Blanket Behind Divertor*	25	15%	21% SiC/SiC Structure 79% LiPb (< 90% enriched Li)
Non-uniform Blanket#	25 - 50 cm	24%	21% SiC/SiC Structure 79% LiPb (< 90% enriched Li)
SiC Shield-I	38 cm	76%	15% SiC/SiC Structure 10% LiPb Coolant 75% Borated Steel Filler
SiC Shield-II	38 - 57 cm	24%	15% SiC/SiC Structure 10% LiPb Coolant 75% Borated Steel Filler

^{*} Replaceable component.

^{# 25} cm replaceable and rest is permanent.

LiPb/SiC Compositions and Coverage Fractions (Cont.)

Component	Thickness	Coverage Fraction	Composition
Vacuum Vessel	28 cm	100%	28% FS Structure 49% Water 23% Borated Steel Filler
Inner Coil Case (in front of WPs only)	2 cm	28%	95% JK2LB Structure 5% LHe Coolant
Winding Pack @ 4K	18 cm	28%	18.5% JK2LB Structure 48.2% Cu 12.8% Nb ₃ Sn 10.0% GFF Polyimide 10.5% LHe Coolant
Strong Back (behind WPs only)	28 cm	28%	95% JK2LB Structure 5% LHe Coolant
Intercoil Structure (between WPs)	20 cm#	72%	95% JK2LB Structure 5% LHe Coolant
Cryostat	5 cm	100%	100% 304-SS
Bioshield	200 cm	100% ?	85% Concrete 10% Mild Steel 5% He coolant

^{*} Replaceable component.

 $^{\# \}sim 16$ cm for outboard and ~ 28 cm for inboard, per Xueren.

Design Requirements Satisfied Except at Divertor*

Overall TBR (for T self-sufficiency)	1.1
Damage to Structure	200 dpa - FS
	3% Burnup - SiC
Helium Production @ Manifolds and VV (for reweldability of FS)	1 appm
S/C Magnet (@ 4 K):	
Peak fast n fluence to Nb_3Sn ($E_n > 0.1 MeV$)	10^{19} n/cm ²
Peak nuclear heating	$2 mW/cm^3$

Biological dose to workers/public during operation

* Due to undefined divertor location, unknown NWL, and streaming issues.

Peak **dpa** to Cu stabilizer

Peak **dose** to electric insulator

6x10⁻³ dpa

 $> 10^{11}$ rads

< 0.25 mrem/h

Bioshield Should be ≥ 1.9 m Thick to Reduce Dose by 8 Orders of Magnitude

Key Parameters

	LiPb/FS/He	<u>LiPb/SiC</u>
$ \prod_{\min} (m) $	1.3	≤ 1.3 ?
Overall TBR#		~ 1.1
Li-6 Enrichment#	<	< 90%
Overall Energy Multiplication#	~ 1.155	1.1
He: LiPb Power Ratio*	~ 48:52	
FW EOL Fluence (MWy/m ²)	15.7 - FS	18 - SiC
FW/Blanket/Divertor Lifetime (FPY)	3.9	4.5
# of Blanket Modules	~ 150	< 100 ?
System Availability	85%	> 85% ?
Plant Lifetime (FPY)		40

[#] TBD by 3-D analysis.

^{*} To be updated.

Future Plan

- Provide **NWL distribution** for R= 7.75 m design.
- Check NWL at divertor and assess streaming through divertor He access pipes (need divertor location from UCSD).
- Perform 3-D nuclear analysis for R= 7.75 m design (need CAD input data from UCSD for all components, including blanket variation, divertor system, SOL variation, and penetrations).
- Provide decay heat for LOCA/LOFA and safety analyses.
- Update **heat load** to all components and He:LiPb **power ratio**.
- Help define **replacement cost**.
- Iterate with J. Lyon on LiPb/SiC system.
- Provide radial build for **2 FP** configuration.

ARIES-Related Publications

- Two abstract submitted to 17th TOFE* (Nov 13-15, 2006, Albuquerque, NM):
 - L. El-Guebaly, R. Raffray, S. Malang, J. Lyon, L.P. Ku, X. Wang, P. Wilson, D. Henderson, T. Tautges, M. Sawan, G. Sviatoslavsky, B. Kiedrowski, M. Wang, L. Bromberg, C. Martin, B. Merrill, L. Waganer, F. Najmabadi and the ARIES Team "Overview of ARIES-CS In-vessel Components: Integration of Nuclear, Economic, and Safety Constraints in Compact Stellarator Design."
 - P. Wilson, B. Kiedrowski, T. Tautges, and L. El-Guebaly, "Three-Dimensional Neutron Transport for ARIES-CS."
- Three papers will be submitted to 8th IAEA TM on Fusion Power Plant Safety (July 10-13, 2006, Vienna, Austria):
 - L. El-Guebaly, "Evaluation of Disposal, Recycling, and Clearance Scenarios for Managing ARIES Radwaste after Plant Decommissioning."
 - √ L. El-Guebaly, R. Pampin (UK), and M. Zucchetti (Italy), "Clearance Considerations for Slightly-Irradiated Components of Fusion Power Plants."
 - $\sqrt{-}$ D. Petti et al., "Future Directions in U.S. Fusion Safety & Environmental Program."
- √ UW-FDM will be published soon: L. El-Guebaly, R. Pampin (UK), and M. Zucchetti (Italy), "Insights from Clearance Assessments of Fusion Power Plants: ARIES and PPCS."

^{*} Abstract deadline extended to July 7, 2006.