

Near-Final Radial Build and Nuclear Parameters

L. El-Guebaly

Fusion Technology Institute UW - Madison

Contributors:

L-P. Ku (PPPL), J. Lyon (ORNL), R. Raffray, S. Malang, X. Wang (UCSD)

ARIES-CS Project Meeting

April 27 - 28, 2006 UW

UW Action Items

- $\sqrt{1}$ Check blanket coverage and TBR for R = 7.5 and 8 m. Need plasma-midcoil separation contours from PPPL
 - 2. Optimize local shield behind helium access tubes
- $\sqrt{3}$. Provide radial build at cross-section through He access tube near delta-min
- $\sqrt{4}$. Update shield vs. NWL scaling law
- $\sqrt{}$ 5. Update power fraction to blanket Pb-17Li coolant, blanket and shield He, shield-only zone He and divertor He
- √ 6. Update He:LiPb power split using 28 MWe pumping power for div He and 97 MWe for blanket He.
- √ 7. Check magnet activation for candidate structures (get composition from Leslie)
- $\sqrt{8}$. Provide heat load to 35-cm thick inter coil structure
 - 9. Provide radial build for 2 field period configuration. Received plasma-midcoil separation contours from PPPL
 - 10. Provide radial build for advanced LiPb/SiC system
- $\sqrt{11}$. Provide radial build for full blanket coverage
- $\sqrt{12}$. Redefine reference radial build and post it on UW website

Contents

- Plasma mid-coil separation contours for R = 7 8.5 m machines.
- Rationale for R = 7.5 m design.
- Near-final radial build and nuclear parameters.
- Orientation of He access tubes to mitigate streaming problem.
- Streaming concerns for divertor region.
- Updates:
 - Heat load to all components
 - Power split between He/LiPb coolants.
- Future plan and publications.

Insufficient Breeding for R= 7 m Machine Mandates Another Iteration

New Plasma – Mid-coil Separation Contours

- From: L-P Ku (PPPL)
- Basis: ARE physics
- Configuration: 3 FP
- $4 \prod_{\min} per FP$
- \square_{\min} \square R, starting at 1.18 m for R= 7 m

CAD Confirmed UW Estimate for Blanket Coverage Fractions

R= 7 m machine	UW Estimate	CAD	
Non-uniform Blanket	35%	36%	
Uniform Blanket	65%	64%	

R = 7 m

[$4 \prod_{\min} (= 1.18 \text{ m}) \text{ marked in red }]$

- Uniform blanket and divertor outside blue contour covers ~65% of FW area.
- Non-uniform, tapered blanket inside blue contour covers ~35% of FW area.

R = 7.5 m

[$4 \prod_{\min} (= 1.26 \text{ m}) \text{ marked in red }]$

- Uniform blanket and divertor outside red contour covers ~72% of FW area.
- Non-uniform, tapered blanket inside red contour covers ~28% of FW area.

R = 8 m

[$4 \prod_{\min} (= 1.34 \text{ m}) \text{ marked in red }]$

- Uniform blanket and divertor outside green contour covers ~80% of FW area.
- Non-uniform, tapered blanket inside green contour covers ~20% of FW area.

R = 8.5 m

[$4 \prod_{\min} (= 1.43 \text{ m}) \text{ marked in red }]$

- Uniform blanket and divertor outside brown contour covers ~87% of FW area.
- Non-uniform, tapered blanket inside brown contour covers ~13% of FW area.

Non-uniform Blanket Coverage Decreases with R

Near-Final Radial Build

 $(R=7.5 \text{ m}; 4.5 \text{ MW/m}^2 \text{ peak } \square)$

Radial / Toroidal Xn

 $(R=7.5 \text{ m}; 4.5 \text{ MW/m}^2 \text{ peak } \square)$

Full Blanket/shield and Divertor (57%+15%= 72% of FW area)

Non-uniform, Tapered Blanket/Shield (28% of FW area)

Streaming Through Blanket He Access Tubes (Cont.) (Non-uniform Blanket Region)

Monitor location/orientation of He access tubes as design develops

Streaming Through Blanket He Access Tubes (Non-uniform Blanket Region)

- Thermal analysis calls for 32 cm OD tubes to supply He from manifolds to blanket.
- Each tube replaces 32-40 cm of WC-shield and back wall.
- Neutrons streaming through He tube increase damage at VV and magnets.
- Careful choice of location and orientation of tubes alleviate streaming problem.
- ~20 cm thick local shield needed behind manifolds to protect VV and magnets.

Xn through Divertor System

(R = 7.5 m)

Xn through Divertor System (Cont.)

- Damage at shield and manifolds depends on NWL at divertor location.
- Xn through divertor and blanket (away from pipes) indicates **no problem if** peak NWL remains below 2 MW/m² at divertor surface.
- Neutron streaming through He access pipes increases damage to all components surrounding pipes.
- Malang suggested shield inserts to protect surrounding components. Shielding effectiveness of inserts will be assessed with 3-D analysis.

Compositions and Coverage Fractions

 $(R=7.5 \text{ m}; 4.5 \text{ MW/m}^2 \text{ peak } \square)$

Component	Thickness	Coverage Fraction	Composition
\mathbf{FW}^*	3.8 cm	85% } 100%	34% FS Structure 66% He Coolant
Divertor System*	20 cm	15%	32.6% FS Structure 4.0% W 63.4% He Coolant
Blanket behind Divertor*	35 cm	15%	75% LiPb (90% enriched Li) 9% SiC Inserts 8% FS Structure 8% He Coolant
Non-uniform Blanket*	23 - 54.3 cm	28% > 100%	76% LiPb (90% enriched Li) 8% SiC Inserts 8% FS Structure 8% He Coolant
Full Blanket*	54.3 cm	57%	79% LiPb (90% enriched Li) 7% SiC Inserts 6% FS Structure 8% He Coolant
Back Wall*	5 cm	100%	80% FS Structure 20% He Coolant
FS Shield	30 cm	72%	15% FS Structure 10% He Coolant 75% Borated Steel Filler
Manifolds	35 cm	75%	52.0% FS Structure 22.7% LiPb (90% enriched Li) 24.0% He Coolant
* Replaceable component.			1.3% SiC Inserts

¹⁸

Compositions and Coverage Fractions (Cont.)

Component	Thickness	Coverage Fraction	Composition
WC Shield-I*	0 - 12 cm	28%	15% FS Structure 10% He Coolant 75% WC Filler
WC Shield-II	26 – 34 cm	28%	15% FS Structure 10% He Coolant 75% WC Filler
VV	28 cm	100%	28% FS Structure 49% Water 23% Borated Steel Filler
Inner Coil Case (in front of WPs only)	2 cm	33%	95% Incoloy-908 Structure 5% LHe Coolant
Winding Pack @ 4K	18 cm	33%	18.5% Incoloy-908 Structure 48.2% Cu 12.8% Nb ₃ Sn 10.0% GFF Polyimide 10.5% LHe Coolant
External Structure (behind WPs only)	56 +10 cm	33%	95% Incoloy-908 Structure 5% LHe Coolant
Inter Coil Structure (between WPs)	35 cm	67%	95% Incoloy-908 Structure 5% LHe Coolant

^{*} Replaceable component.

Overall TBR

- 1-D and 3-D TBR comparison indicated good agreement for **full** blanket coverage (no blanket variation, no divertor system, no penetrations) refer to June 05 presentation.
- Overall TBR reported herein is based on 1-D results combined with blanket/divertor coverage.

• Assumptions:

- All regions (divertor, full and tapered blankets) have same importance for breeding. Local breeding usually follows NWL distribution.
- Divertor system covers 15% of FW area:
 - No variation of divertor coverage fraction with R
 - 12.5 cm thick <u>divertor targets/baffles and alpha modules</u> followed by
 7.5 cm thick <u>He manifolds</u>
 - 55 cm OD He access pipe for each divertor plate (~ 2x 2 m each)
 - 3 cm wide gap between divertor and blanket.
- Thin blanket (35 cm thick) behind divertor system.
- Penetrations occupy 1% of FW area.

Overall TBR (Cont.)

R = 7.5 m 15% Divertor Coverage Overall TBR ~ 1.1 based on 1-D estimate

Overall TBR (Cont.)

- 1-D TBR estimate should be confirmed with 3-D analysis.
- Need CAD input file from UCSD to couple it with MCNP 3-D neutronics code.
- CAD data should include:
 - Non-uniform SOL (5 20 cm)
 - Blanket variation
 - Divertor system
 - Penetrations.
- If 3-D results indicate:
 - Over-breeding (overall TBR > 1.1), lower Li enrichment below 90% (see next slide).
 - Under-breeding (overall TBR < 1.1):</p>
 - Increase "full blanket" thickness by ~10 cm (see next slide), and/or
 - Increase major radius (\square R > 7.5 m).

Overall TBR (Cont.)

Full Blanket/Shield Region

Solution for **over-breeding** blanket: Reduce Li enrichment below 90%. Solutions for **under-breeding** blanket: Increase blanket thickness (or increase major radius).

Heat Load to In-vessel Components ($R=7.5 \text{ m}, P_f=2561 \text{ MW}$)

Thermal Power (MW _{th})	Full Blkt/Shld	Divertor Region	Non-uniform Blkt/Shld	Total	
\mathbf{FW}	117		57	174	
Divertor		159		159	
Blanket	1141	171	516	1827	94%
WC-Shield-I			48	48	
Back Wall	9	3	10	22	
Shield	58	21	49	128	6%
Manifolds	6	2	*	8	
Total	1330 (56%)	356 (15%)	680 (29%)	2366	
			\square Overall $M_n = 1.155$.155
Low Grade Heat		0. 7	0.6		
* Contribution included in full	13	0.5	0.6	14 (< 1%)	

^{*} Contribution included in full blanket/shield manifolds.

Power Split between He & LiPb Coolants $(R=7.5 \text{ m}, P_f=2561 \text{ MW})$

Thermal Power (MW _{th})	He	LiPb	Total
Surface Heat	512		512
90% of He Pumping Power	125		125
FW	174		174
Divertor	159		159
Blanket	168	1659	1827
WC-Shield-I	48		48
Back Wall	22		22
Shield	128		128
Manifolds	3	5	8
Leakage from LiPb to He	+100	-100	0
Total	1439	1564	3003

 \Box He: LiPb power ratio = 48:52

W
THE UNIVERSITY
WISCONSIN
MADISON

Design Requirements Satisfied Except at Divertor (Unknown Location and NWL)

Overall TBR (for T self-sufficiency)	1.1	
Damage to Structure	200	dpa
Helium Production @ Manifolds and VV (for reweldability of FS)	1	appm
S/C Magnet (@ 4 K): Peak fast n fluence to Nb ₃ Sn (E _n > 0.1 MeV) Peak nuclear heating Peak dpa to Cu stabilizer Peak dose to electric insulator		n/cm ² mW/cm ³ dpa rads
Machine Lifetime	40	FPY
Availability	~ 85%	?

Key Parameters for Economic Analysis

 \square_{\min} 1.26

Overall TBR 1.1

Overall Energy Multiplication 1.155

He: LiPb Power Ratio 48:52

FW EOL Fluence 15 MWy/m²

FW Lifetime 3.3 FPY (for 4.5 MW/m² peak [])

System Availability ~85%?

Magnet Structure: Incoloy-908 or JK2LB?

	Incoloy	JK2LB
Nb content	3 wt%	
Class A WDR	0.1	0.0003
Clearable?	no	after 1 y
Recycle	remotely	hands-on

⁹⁴Nb is main contributor to CI and dose after 1 y

Concluding Remarks and Future Plan

- R= 7.5 m design offers adequate TBR. To be confirmed with 3-D analysis. Need CAD data from UCSD for all components, including divertor and penetrations.
- Monitor location and orientation of He access tubes.
- Protection of components behind divertor system needs further assessment.

• Future plan:

- Perform 3-D analysis to confirm overall TBR and M_n for R= 7.5 m design.
- Update NWL distribution for R= 7.5 m design with non-uniform SOL using latest parameters (neutron source profile, plasma surface, magnetic axis trajectory, and SOL variation).
- Check NWL at divertor and assess streaming through divertor He access pipes
- Document work.

ARIES-CS Publications

- Two abstracts submitted to 8th IAEA TM on Fusion Power Plant Safety
 - (July 10-13, 2006, Vienna, Austria). Papers due at the meeting:
 - **L. El-Guebaly**, "Evaluation of Disposal, Recycling, and Clearance Scenarios for Managing ARIES Radwaste after Plant Decommissioning"
 - **L. El-Guebaly**, R. Pampin (UK), and M. Zucchetti (Italy), "Clearance Considerations for Slightly-Irradiated Components of Fusion Power Plants".

• Few abstracts will be submitted to 17th TOFE by June 9, 2006 (Nov 13-15, 2006, Albuquerque, NM http://tofe17.sandia.gov/home.html)