

Revised Radial Build Data; Breeding and Streaming Concerns

L. El-Guebaly

Fusion Technology Institute UW - Madison

With input from:

L-P. Ku (PPPL), R. Raffray, S. Malang, X. Wang (UCSD)

ARIES-CS Project Meeting

January 23, 2006 UCSD

Contents

- Plasma midcoil separation contours for R = 7 m baseline case.
- Breeding concern due to less blanket coverage.
- Shielding requirement for He access tubes.
- Recommended design changes to solve breeding and streaming problems.

Previous Radial Build - R = 8.25 m

(3 FP Configuration; LiPb/FS/He System; 3 MW/m² peak □)

Previous Case - R = 8.25 m

 $(\text{peak } \square = 3 \text{ MW/m}^2)$

Previous Design - 2 \square_{\min} per Field Period (R= 8.25 m)

Shield-only zone (green), transition region (blue), and nominal blanket zone cover >5%, >10% and <85% of FW area, respectively

New Baseline Design (R = 7 m)

- 4 \square_{\min} per field period \square Less blanket coverage \square less breeding.
- ~ 5 MW/m² peak neutron wall loading [] more shielding
- 18 cm thick magnet, not 31 cm \square 6 cm free space at \square_{\min}
- $\square_{\min} = 118 \text{ cm}, \text{ not } 119 \text{ cm}$
- Per Siegfried:
 - No He/LiPb manifolds at □_{min}
 - He/LiPb access tubes placed at least 1 m away from \square_{\min}
 - streaming problem
 - No cut/reweld of VV sections near \square_{\min} .

New Baseline Design - R=7 m 4 \square_{min} per Field Period

- Shield-only zone (red) and transition zone (blue) cover large area (~35%).
- Nominal blanket covers only $\sim 65\%$ of area, raising breeding concern.

FW Coverage Fraction (%)

	UW Estimate	CAD	UW Estimate	CAD
R (m)	8.25	8.25	7	7
Shield-only zone	~ 5	6.5	~ 10	?
Transition zone	~ 10	13.5	~ 25	?
Full blanket	~ 85	80	~ 65	?

Need coverage fraction from UCSD to check TBR for R=7 m.

Overall TBR

- 1-D and 3-D TBR comparison indicated good agreement for **full** blanket coverage (no blanket variation, no divertor system, no penetrations) refer to June 05 presentation.
- Overall TBR is based on 1-D results combined with blanket coverage.
- Assumptions:
 - Divertor/baffle system covers 10% of FW area:
 - 12.5 cm thick <u>divertor/baffle system</u> covers 8% of FW area followed by 42 cm thick blanket.
 - Divertor <u>He manifolds</u> cover 2% of FW area without blanket behind manifolds.
 - Penetrations occupy 1% of FW area.

Baseline Design

 $(R = 7 \text{ m}, \text{ peak } \square = 5 \text{ MW/m}^2)$

- Limited blanket coverage
 - unacceptable overall TBR
- 6 cm free space available @ \square_{\min}
 - \Box install thin blanket at \Box_{\min}
- Two Options:

Shield-only zone $\sqrt{}$ --Transition zone $\sqrt{}$ $\sqrt{}$

Full blanket √ 1

Baseline Design - Option I

 $(R = 7 \text{ m}, \text{ peak } \square = 5 \text{ MW/m}^2)$

Baseline Design - Option II

 $(R = 7 \text{ m}, \text{ peak } \square = 5 \text{ MW/m}^2)$

Radial Build – Option II

(5 MW/m² peak []; changes marked in red)

Red Contour Designates 10% of VV WISCONSIN near min (not reweldable after 28 FPY)

Reweldable VV everywhere requires additional 3 cm WC-shield $121 \text{ cm} \square_{\min}$, not 118 cm.

Blanket / WC-Shield Tradeoff

(Non-uniform Blanket/Shield Region - Option-II)

- Replaceable components: FW/blanket, WC-shield-I, back wall.
- WC-shield-II and magnet protected for plant life.
- VV near \square_{min} is **not** reweldable after 28 FPY.

Insufficient Tritium Breeding Calls for Design Change

Option-II

Overall TBR ~ 1.07

- Potential solutions to meet breeding requirement (overall TBR = 1.1):
 - Increase "full blanket" thickness by 10 cm (from 54 cm to 64 cm).
 - Increase major radius (R > 7 m) to allow more "full blanket" coverage (> 65%) (preferred option).

Streaming Through He/LiPb Access Tubes (Non-uniform Blanket Region)

- Each LiPb/He access tube replaces 32-40 cm of WC-shield and back wall.
- Neutrons streaming through He tube increase magnet damage by 1-2 orders of magnitude.
- 25-30 cm thick local shield needed between manifolds and VV to protect VV and magnet. To be confirmed by 3-D analysis.
- Tilted tube away from \square_{\min} helps reduce size of local shield and relocate it in area of more free space.
- Q to UCSD: does radial space allow 25-30 cm of local shield? If not, larger machine with R > 7 m is needed.

Xn Through He Access Tube

 $(R = 7 \text{ m, peak } \square = 5 \text{ MW/m}^2)$

Most critical shielding space (not at \square_{\min})

Conclusions

- Thin magnet (18 cm thick) permits installing thin blanket at \square_{\min} .
- Baseline design with R= 7 m offers low "uniform blanket" coverage, causing breeding problem (TBR < 1.1).
- Blanket consists of two main regions: uniform (≥ 54 cm thick) and non-uniform (13-54 cm). Need coverage fractions from UCSD to confirm TBR estimate.
- To fix streaming problem, 25-30 cm local shield is needed behind He access tubes.
- Breeding and streaming problems call for larger machine with R > 7 m. Need from L-P Ku: plasma-midcoil separation contours for R=7.5 and 8 m with $\prod_{min} \sim 1.2$ m.
- New design could be driven by radial standoff at He access tube, not at \square_{\min} .
- Designs employing no He coolant (such as advanced LiPb/SiC system) could be more suitable for compact stellarators.

No streaming problem and higher \square_{th}

smaller machine and lower COE (~ 20 mills/kWh saving).

Future Plan

- Get plasma-midcoil separation contours from PPPL for R > 7 m and solve breeding and streaming problems.
- Optimize dimensions of local shield behind He access tubes and confirm VV/magnet protection with 3-D analysis.
- Perform 3-D breeding calculation. Need CAD input files from UCSD for baseline design with blanket variation, divertor system, and penetrations.
- Update radial build for LiPb/SiC system.