Radial Build Definition for LiPb/FS and Li/FS Systems

Laila El-Guebaly

Fusion Technology Institute University of Wisconsin - Madison

With Input from: S. Malang (FZK) and R. Raffray (UCSD)

http://fti.neep.wisc.edu/FTI/ARIES/SEP2003/lae_radialbuild.pdf

ARIES-CS Project Meeting September 3, 2003 Atlanta, GA

Candidate Blanket Concepts

Breeder	<u>Multiplier</u>	<u>Structure</u>	<u>Blanket/Shield</u> <u>Coolant</u>	<u>VV</u> <u>Coolant</u>	<u>VV</u> <u>Location</u>
ARIES-C Flibe	CS: Be	FS	Flibe	H ₂ O	Inside Magnet
LiPb	_	SiC	LiPb	H ₂ O	Inside Magnet
LiPb	_	FS	He	H ₂ O	Inside Magnet
LiPb	_	FS	He	He	Outside Magnet
Li	_	FS	He/Li	He	Outside Magnet
SPPS: Li		V	Li	He	Outside Magnet

Initial Parameters (1/31/03 Strawman - L.P. Ku)

Net Electric Power	1000 MW _e
Fusion Power	2000 MW
# of Field Periods	3
Α	4.5
< R >	8.25 m
< a >	1.85 m
Average Neutron Wall Loading (Γ)*	2 MW/m ²
FW Area	~ 800 m ²
Toroidal Length of Field Period	~ 9 m
Minimum Plasma to Mid-Coil Distance (Δ_{\min})	1.2 m
# of Δ_{\min} per Field Period	2
<u>FW Coverage Fraction[#] for Shield-only Zones</u>	8%

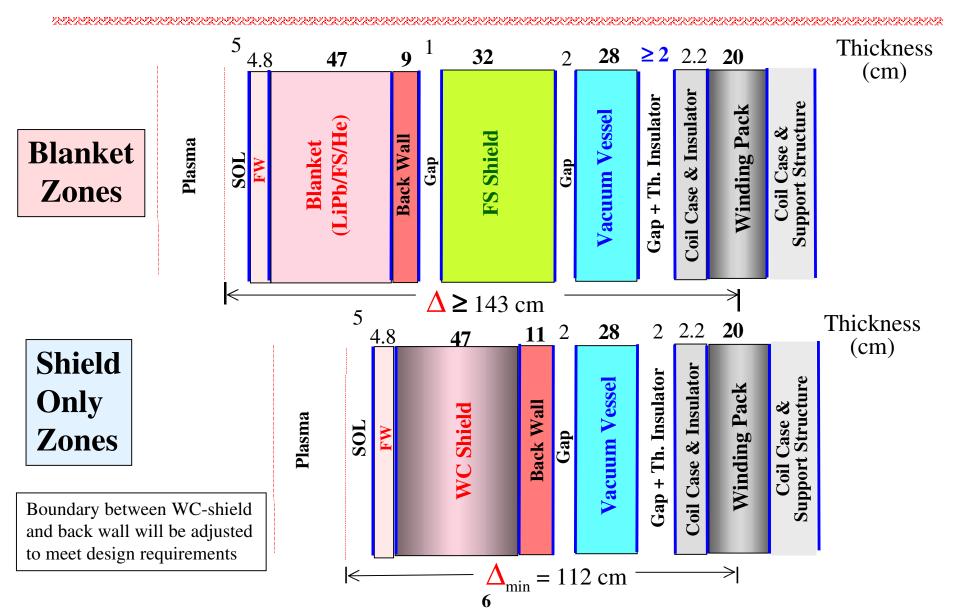
* Peak Γ is ~3 MW/m².

Sensitive to difference between $\Delta_{\!\min}$ and nominal Δ .

こくちん しんしん しんしん しんしんしん

Design Requirements and Radiation Limits

Overall TBR (for T self-sufficiency)	1.1	
dpa to FS Structure (for structural integrity)	200	dpa
Helium Production @ VV (for reweldability of FS)	1	appm
LT S/C Magnet (@ 4K):		
n fluence to Nb ₃ Sn ($E_n > 0.1$ MeV)	1019	n/cm ²
Dose to polyimide insulator	10^{11}	rads
Nuclear heating	2	mW/cm ³
dpa to Cu stabilizer	6x10-	³ dpa
Biological dose outside building	2.5	mrem/h
(dose during operation for workers and public protection)		

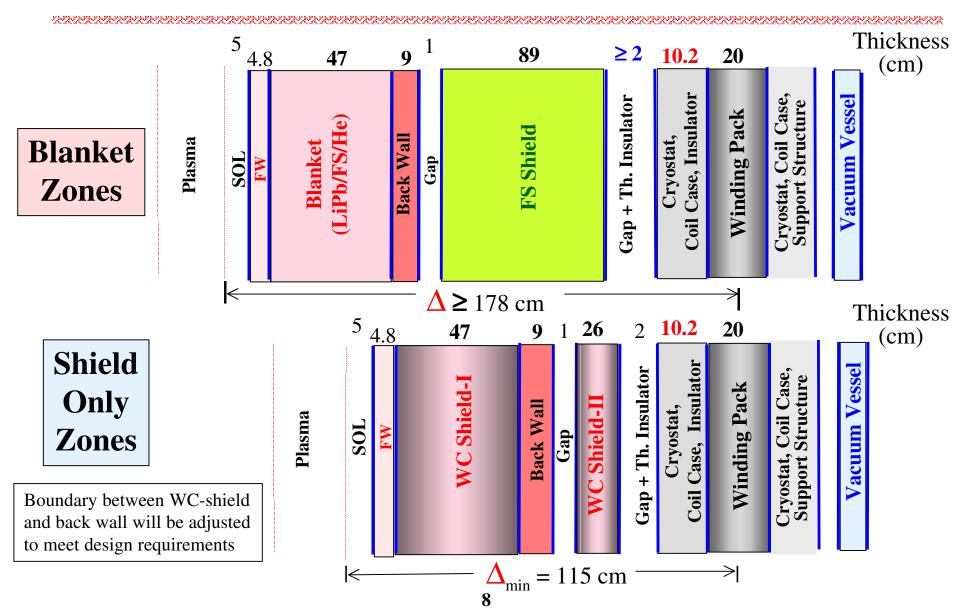


Assumptions

- Peak to average $\Gamma = 1.5$
- RF Penetrations and assembly gaps occupy 2% of FW area.
- **Divertor** plates/baffles:
 - 5 cm thick
 - 50% structure and 50% He coolant
 - Cover 15% of FW area.
- SPPS magnet composition.
- 8% FW coverage fraction of shield-only zones used for <u>all</u> blanket concepts.
- **1-D** poloidal neutronics model with av. a = 1.85 m.

THE UNIVERSITY WISCONSIN MADISON

Recommended LiPb/FS/He Radial Build (water-cooled internal VV)

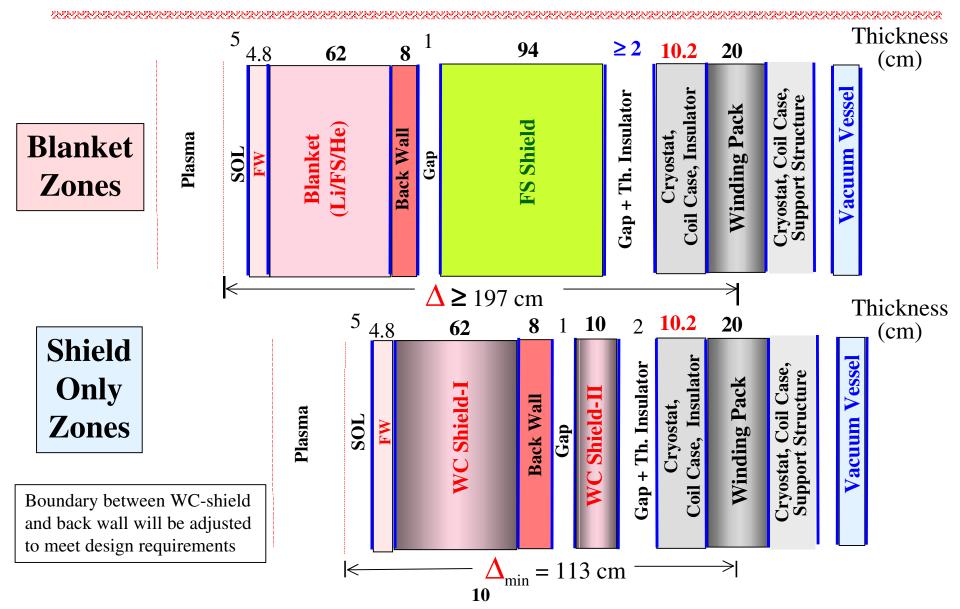

LiPb/FS/He System (water-cooled internal VV)

<u>Components</u>	Composition
FW	31% FS Structure 69% He Coolant
Blanket	90% LiPb with 90% enriched Li 3% FS Structure 7% He Coolant
WC Shield*	90% WC Filler 3% FS Structure 7% He Coolant
FS Shield	15% FS Structure 10% <mark>He</mark> Coolant 75% Borated Steel Filler
VV	28% FS Structure 49% Water 23% Borated Steel Filler
Winding Pack (Composition not available. Used SPPS')	25% Incoloy Structure 20% Cu Stabilizer 15% Nb ₃ Sn + Conduit 25% GFF Polyimide 15% LHe

* Same constituents for blanket with WC replacing LiPb.

Recommended LiPb/FS/He Radial Build (He-cooled External VV)

LiPb/FS/He System (He-cooled External VV)


Components	Composition
FW	31% FS Structure 69% He Coolant
Blanket	90% LiPb with 90% enriched Li 3% FS Structure 7% He Coolant
WC Shield-I*	90% WC Filler 3% FS Structure 7% He Coolant
WC Shield-II [#]	15% FS Structure 10% <mark>He</mark> Coolant 75% WC Filler
FS Shield	15% FS Structure 10% <mark>He</mark> Coolant 75% Borated Steel Filler
Winding Pack (Composition not available. Used SPPS')	25% Incoloy Structure 20% Cu Stabilizer 15% Nb ₂ Sn + Conduit 25% GFF Polyimide 15% LHe
VV	30% FS Structure 70% He

^{*} Same constituents for blanket with WC replacing LiPb.

[#] Same constituents for FS-shield with WC replacing B-FS filler. $ZrH_{1.7}$ filler could save 2-3 cm in radial build.

Recommended Li/FS/He Radial Build (He-cooled External VV)

Li/FS/He System (He-cooled External VV)

<u>Components</u>	Composition
FW	31% FS Structure 69% He Coolant
Blanket	90% Li (natural) 3% FS Structure 7% <mark>He</mark> Coolant
WC Shield-I*	90% WC Filler 3% FS Structure 7% He Coolant
WC Shield-II [#]	15% FS Structure 10% He Coolant 75% WC Filler
FS Shield	15% FS Structure 10% He Coolant 75% Borated Steel Filler
Winding Pack (Composition not available. Used SPPS')	25% Incoloy Structure 20% Cu Stabilizer 15% Nb ₂ Sn + Conduit 25% GFF Polyimide 15% LHe
VV	30% FS Structure 70% He

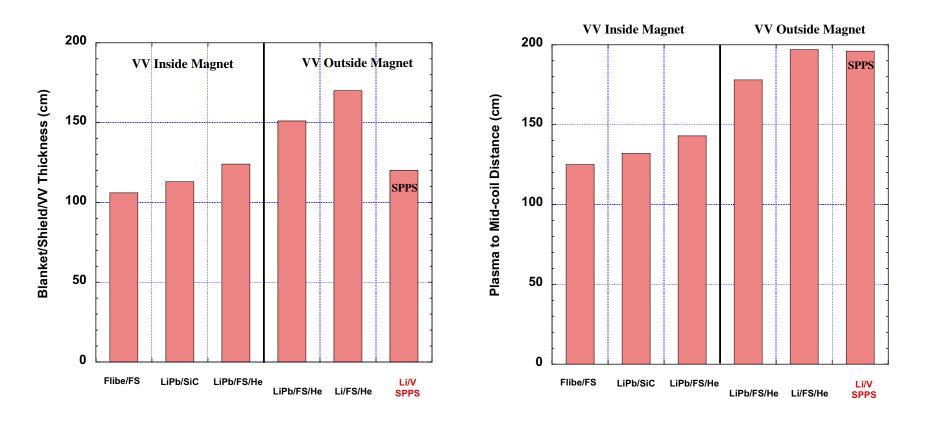
^{*} Same constituents for blanket with WC replacing LiPb.

[#] Same constituents for FS-shield with WC replacing B-FS filler. ZrH_{1.7} filler could save 2-3 cm in radial build.

Nominal Blanket and Shielding Components

		ARIES-CS				
		Internal VV		External VV		External VV
Blanket Concept	Flibe/FS/Be	LiPb/SiC	LiPb/FS/He	LiPb/FS/He	Li/FS/He	<u>Li/V</u>
Thickness (cm):						
FW/Blanket-I	33	25	52	52	67	36
Gap	-	1	-	-	—	-
FW/Blanket-II	-	25	_	-	—	-
FS Back Wall	_	_	9	9	8	-
Gap	1	_	1	1	1	2
HT Shield	45	35	32	89	94	45
Gap	2	2	2	_	_	2
LT Shield	_	_	_	_	_	35
VV	25	25	28	_	_	-
Total B/S/VV	106	113	124	151	170	120
Net Change (compared to SPPS)	- 14	- 7	+ 4	+ 31	+ 50	-

Nominal Plasma to Mid-Coil Distance


	ARIES-CS					SPPS
Blanket Concept	Flibe/FS/Be	Internal VV LiPb/SiC	LiPb/FS/He	External LiPb/FS/He		External VV Li/V
Thickness (cm):						
SOL	5	5	5	5	5	15
FW/B/S/VV	106	113	124	151	170	120
Gap + Th. Insl.	≥ 2	≥2	≥ 2	≥ 2	≥2	≥8
Cryostat*	2.2	2.2	2.2	10.2	10.2	15
1/2 Winding Pac	ck 10	10	10	10	10	38
Δ	125	132	143	178	197	196
Net Change (compared to SPPS)	- 71	- 64	- 53	- 18	+ 1	-

* Includes coil case and electric insulator.

Flibe system offers most compact radial build

Comparison Between Nominal Radial Builds

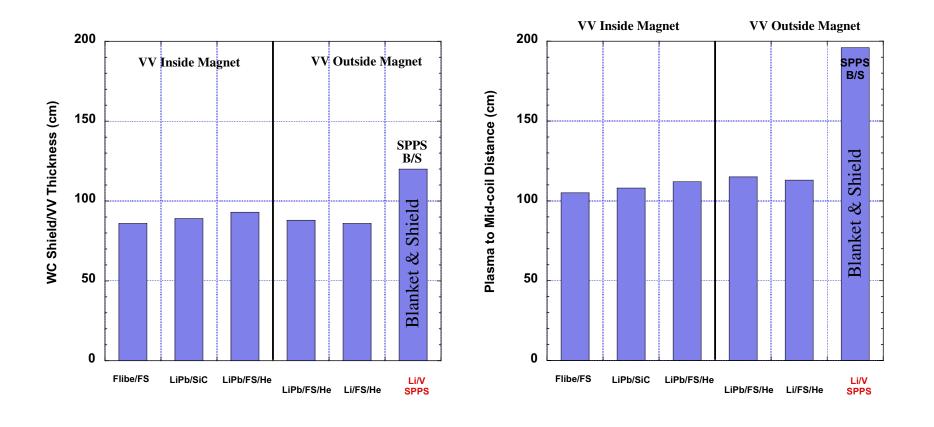
Water-cooled internal VV helps reduce nominal radial build

Recommended Shield-Only Zones for Δ_{\min}

	ARIES-CS					SPPS
Blanket Concept	Flibe/FS/Be	Internal VV LiPb/SiC	LiPb/FS/He	External LiPb/FS/He	VV <u>Li/FS/He</u>	External VV <u>Li/V</u>
Thickness (cm):						
WC Shield-I	33	25	52	52	67	_
FS Back Wall	_	_	11	9	8	_
Gap	1	1	_	1	1	_
WC Shield-II	25	36	_	26	10	_
Gap	2	2	2	_	_	-
LT Shield	_	_	_	_	_	_
VV	25	25	28	-	—	-
Total FW/S/VV	V 86	89	93	88	86	

		SPPS				
		Internal VV			External VV	
Blanket Concept	Flibe/FS/Be	LIPb/SIC	<u>LiPb/FS/He</u>	LiPb/FS/He	<u>L1/FS/He</u>	<u>Li/V</u>
Thickness (cm):						
SOL	5	5	5	5	5	-
FW/S/VV	86	89	93	78	86	_
Gap + Th. Insl.	≥ 2	≥ 2	≥ 2	≥ 2	≥2	_
Cryostat*	2.2	2.2	2.2	10.2	10.2	_
1/2 Winding Pac	k 10	10	10	10	10	_
Δ_{\min}	105	108	112	115	113	

* Includes coil case and electric insulator.

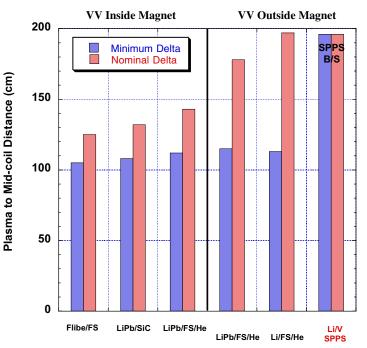

THE UNIVERSITY

WISCONSIN

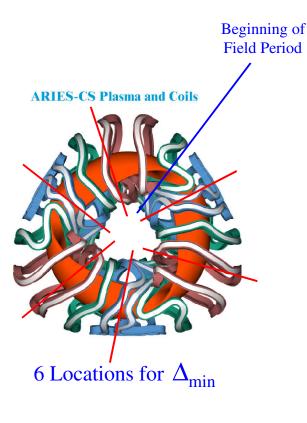
 Δ_{\min} varies slightly with blanket concept

Comparison Between Δ_{\min} (Shield-Only Zones, no Blanket)

VV location has negligible impact on Δ_{\min}

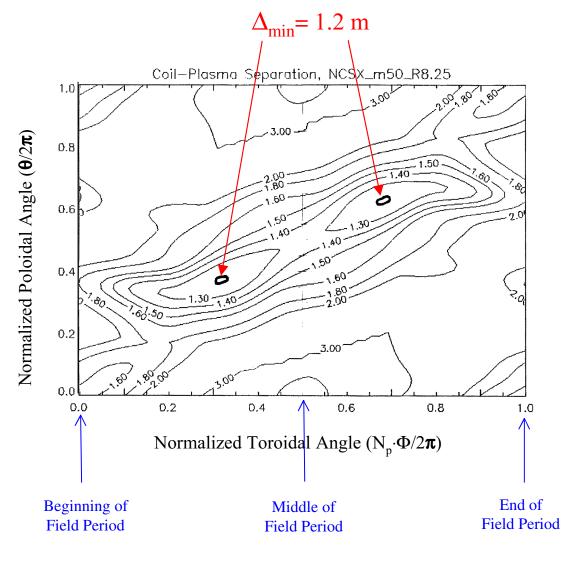

Comparison Between Radial Builds

		ARIES-CS					
Blanket Concept	<u>Flibe/FS/Be</u>	Internal VV <u>LiPb/SiC</u>	LiPb/FS/He	External LiPb/FS/He	Li/FS/He	External VV <u>Li/V</u>	
Thickness (cm):							
Nominal Δ	125	132	143	178	197	196	
Δ_{\min} (shield-only)	105	108	112	115	113	-	
Net Saving	20	24	31	<u>63 ?</u>	84 ?	_	

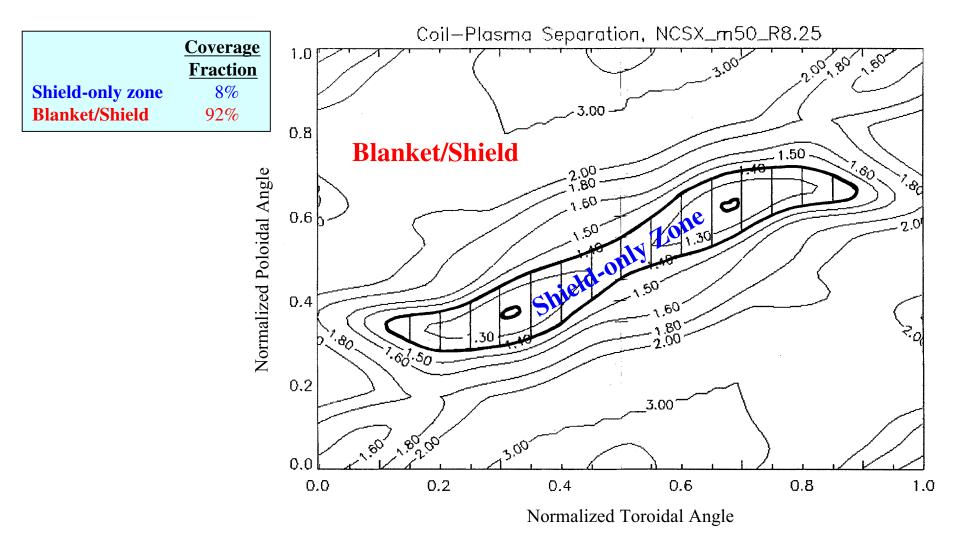

- Shield-only zones could offer 20 84 cm (16 43%) reduction in radial build.
- Net saving exceeding 20 cm calls for shield-only zones with FW coverage > 8%, meaning overall TBR < 1.1.
- It is impossible to achieve TBR of 1.1 for LiPb and Li systems if shield-only zones cover 30-40% of FW area.
- Potential solutions:

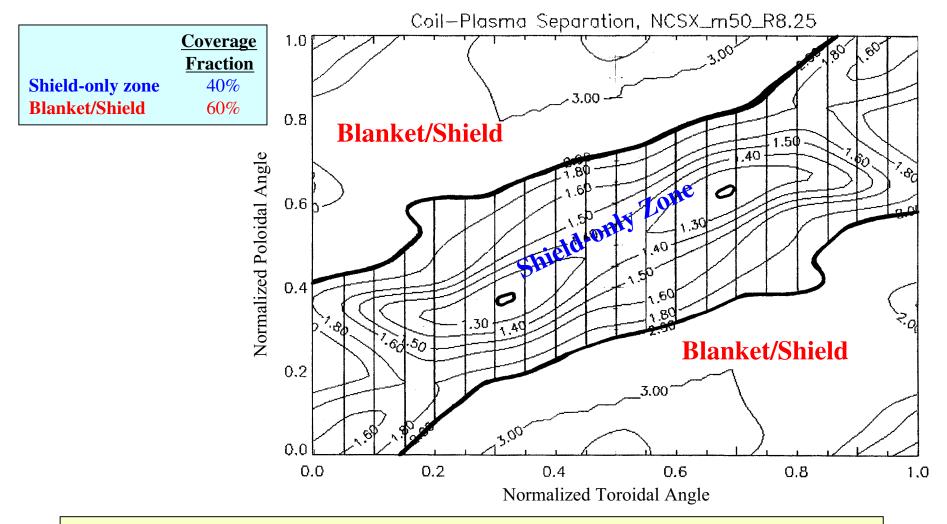
VISCONSIN

- For internal VV case, thicken LiPb blanket
- For external VV case, install LiPb (or Li) blanket everywhere with uniform or variable thickness.

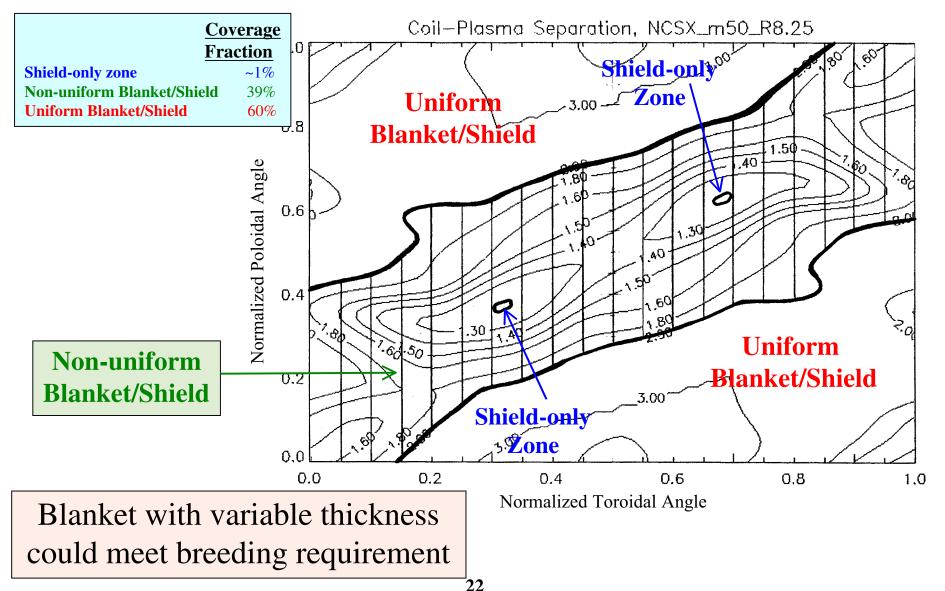


min Occurs Twice per Field Period


THE UNIVERSITY



Transition Region for Δ of 1.2-1.4 m Covers ~8% of FW Area


Image: Wisconsing MatrixTransition Region for Δ of 1.2-2.0 mImage: MatrixCovers ~40% of FW Area

Blankets may not provide TBR ≥ 1.1 if coverage fraction drops below 70%

Potential Solution for Sizable Transition Regions

WC-Shield-Only Zones for Δ_{\min} Introduce Engineering Problems

• Benefits:

- Compact radial build
- Smaller R and lower B_{max}
- Lower COE
- Potential engineering problems:
 - Integration of WC-shield with blanket system
 - Accommodation of WC decay heat removal loop
 - Heavy WC shield \Rightarrow many small modules, if weight-limited
 - Any WC high level waste?

Key Parameters for ARIES-CS System Analysis

	Flibe/FS/Be	LiPb/SiC	<u>LiPb/FS</u>	<u>Li/FS</u>
TBR	1.1	1.1	1.1^* ?	1.1* ?
Energy Multiplication (M _n)	1.2	1.1	1.15	1.13
Thermal Conversion Efficiency ((η _{th}) 45%	55-60%	~45%	~45%
FW Lifetime (FPY)	6.5	6	5	7
System Availability	~80%	~80%	~80%	~80%

* Based on 8% FW coverage fraction for shield-only zones.

Integrated system analysis could assess impact of M_n and η_{th} on COE for comparable Δ_{min}

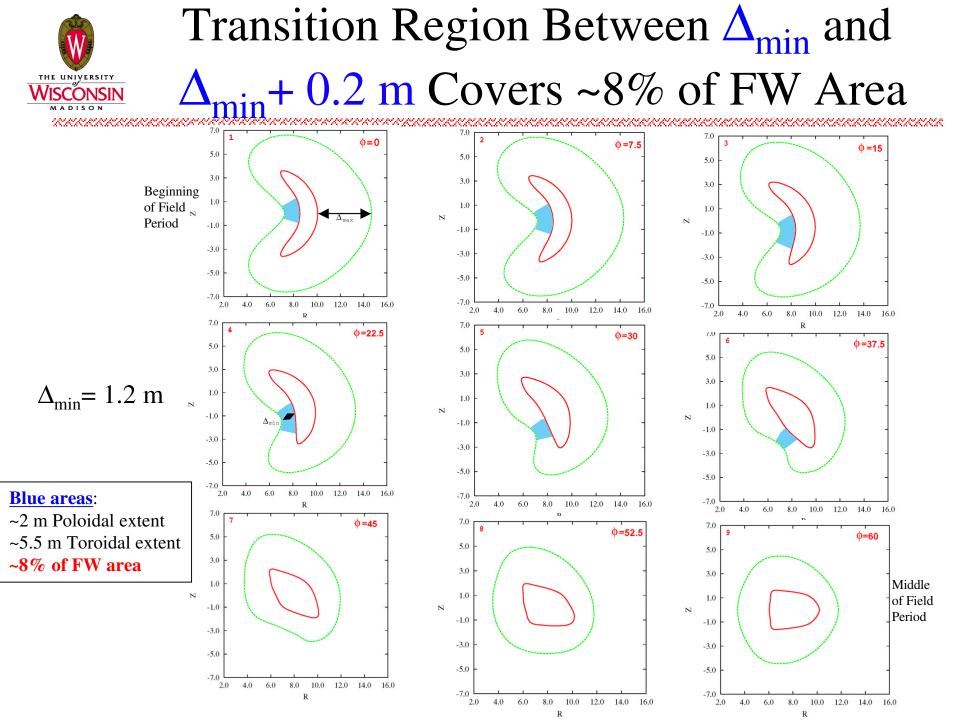
Conclusions

• Radial standoff controls COE, a unique feature for stellarators.

- Employ expensive, highly efficient local shield at Δ_{\min} and combine blanket with variable thickness and cheap shield elsewhere.
- Blankets should breed extra tritium to compensate for losses due to nonbreeding shield-only zones.
- To reduce Δ_{\min} , use:
 - WC-shield
 - Liquid breeder to cool HT shield
 - Water to cool LT shield (or internal VV)
 - No He coolant for shield.
- Shield-only Δ_{\min} varies slightly (2-7 cm) with blanket concept.
- External VV increases Δ_{\min} by few cm.
- Economic impact of shield-only zones needs to be assessed and innovative solutions to WC problems should be developed.

Conclusions (cont.)

- For water-cooled internal VV case, Flibe system offer most compact radial build, followed by LiPb.
- For external VV case, LiPb and Li blankets should be installed everywhere to meet breeding requirement.
- Water is superior shielding material that helps reduce nominal radial build and minimize radwaste volume


 \Rightarrow Exclude breeders incompatible with water.

- **3-D nuclear analysis is needed** to:
 - Generate neutron wall loading profile using CAD-MCNP interface*
 - Assess 3-D impact of shield-only zones on breeding
 - Determine 3-D effect of penetrations, assembly gaps, and divertor system on TBR
 - Evaluate overall TBR for blankets with variable thickness
 - Confirm key nuclear parameters (M_n , lifetime, Δ_{min} , etc)

<u>— Determine boundary between replaceable and permanent components.</u> * Under development at UW.

9 Xns of Plasma Boundary (red) and WP Center (green) Covering Half Field Period (~9 m) THE UNIVERSITY ISCONSIN KRRRRR CRERRER 7.0 7.0 7.0 2 $\phi = 0$ ¢=7.5 **0**=15 5.0 5.0 5.0 $\Delta_{\rm max} \sim 4.6 {\rm m}$ 3.0 3.0 3.0 Beginning of Field 1.0 1.0 1.0 N N N Period Δ_{\max} -1.0 -1.0 -1.0 Γ peaks @ ~3 MW/m² -3.0 -3.0 -3.0 at black dot -5.0 -5.0 -5.0 -7.0 -7.0 -7.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 R R R 7.0 7.0 7.0 5 **0=22.5 \$=30** ¢=37.5 5.0 5.0 5.0 3.0 3.0 3.0 1.0 1.0 1.0 N N $\Delta_{\min} = 1.2 \text{ m}$ -1.0 -1.0 -1.0 Δ_{mi} -3.0 -3.0 -3.0 -5.0 -5.0 -5.0 -7.0 -7.0 -7.0 6.0 8.0 10.0 12.0 14.0 16.0 8.0 10.0 12.0 14.0 6.0 12.0 2.0 4.0 2.0 4.0 6.0 16.0 2.0 4.0 8.0 10.0 14.0 16.0 R R R 7.0 7.0 7.0 **0=45 0=52.5 0=60** 5.0 5.0 5.0 3.0 3.0 3.0 1.0 1.0 1.0 N N N -1.0 -1.0 -1.0 -3.0 Middle -3.0 -3.0 of Field -5.0 -5.0 -5.0 Period -7.0 -7.0 -7.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 R R R

27

