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The Vapor Produced from Liquid Protection by Target

X-rays can Protect material from Subsequent Ions

Vapor rapidly moves off of surface

Target x-rays are rapidly deposited in th

W

t~1-10 ns

protecting liquid.

Impulse launches
shocks that might
damage substrate
and/or splash liquid.
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t ~1-10 s

Debris Ions are
stopped in vapor
and the energy is
re-radiated,
some of it going
to the liquid
causing more
vaporization.




Re-establishment of Chamber Vapor and Liquid

Protection Conditions Set Rep-Rate

t~1-100 ms

Vapor atoms

migrate towards
Knudsen layer at
thermal velocity

—_—

Condensation
occurs as vapor
atoms transit the
Knudsen layer,
which becomes
filled with non-
condensable gas.
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t ~100-500 ms

Protecting liquid
1s re-established.

Vapor density
and temperature
are suitable for
beam transport
ant target
injection



Wetted-Wall Chamber Physics Critical Issues Involve Target

Output, and First Wall Response
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BUCKY, a Flexible 1-D Lagrangian Radiation-Hydrodynamics

Code; Useful in Predicting Target Output and Target Chamber
Dynamics

* 1-D Lagrangian MHD (spherical, cylindrical or slab).

e Thermal conduction with diffusion.
e Applied electrical current with magnetic field and pressure calculation.

e Equilibrium electrical conductivities

* Radiation transport with multi-group flux-limited diffusion,
method of short characteristics, and variable Eddington.

 Non-LTE CRE line transport.
* Opacities and equations of state from EOSOPA or SESAME.
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BUCKY, a Flexible 1-D Lagrangian Radiation-Hydrodynamics

Code; Useful in Predicting Target Output and Target Chamber
Dynamics

* Thermonuclear burn (DT,DD,DHe?) with in-flight reactions.

e Fusion product transport; time-dependent charged particle
tracking, neutron energy deposition.

- Applied energy sources: time and energy dependent ions, electrons,
x-rays and lasers (normal incidence only).

« Moderate energy density physics: melting, vaporization, and thermal
conduction in solids and liquids.

- Benchmarking: x-ray burn-through and shock experiments on
Nova and Omega, x-ray vaporization, RHEPP melting and
vaporization, PBFA-II K, emission, ...

 Platforms: UNIX, PC, MAC

W
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Radiation Transport and Hydrodynamics are Crucial to

IFE Fill-Gas Calculations: Validated for BUCKY and
EOSOPC

*EOSOPC represents an improvement over IONMIX for LTE plasmas:
*Atomic Physics: multi-electron wavefunctions (UTA)
*Degeneracy lowering: Hummer-Mihalas formalism 1s implemented
*Additional effects in EOS: (partial degeneracy, modified Debye-Hiickel interaction)
*Results from EOSOPC have been benchmarked against burnthrough experiments, and

compared with other maior onacitv codes, such as STA.
BUCKY Simulation of Shock in Aluminum

Radiation Driven; 2ns, 225 eV, 270 kJ/cm2, SESAME 3717
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Direct and Indirect-Drive Differ in Spectra and

Energy Partition
Spectra and Energy Partition will effect LLNL Predictions of X-ray spectra
Vaporization of liquid walls.
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Chamber Clearing Dominates Rep-Rate Considerations in

Low Chamber Gas Density Wetted-Wall Chamber Concepts

BUCKY Calculation of HIBALL Target
Chamber Gas Density versus Time

In Low Chamber Gas Density Wetted- e

Wall and Thick-Liquid Concepts, the
Re-Condensation of Chamber Vapor
Can Limit the Rep-Rate.

*BUCKY Models the Vaporization and
Subsequent Re-Condensation of Vapor.

HIBALL

First Wall = Liquid Lithium-Lead
Wall Radius = 5 m
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*Calculation is 1-D and Only Considers
Condensation on Walls (No Nucleate
Condensation).

In HIBALL, Ballistic Focusing of lon
Beam Required a Very Low Gas
Density and a Low Rep-Rate.
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*This is Not Nearly as Important for

Concepts Such as SOMBRERO, Where
Vaporization of the Wall is Avoided
and the Ambient Gas Density is Much 1g “
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Recoil from Rapid Vaporization Applies a Large Impulse to

Surviving Liquid and Substrate

Typical Liquid Wall Parameters

X-ray Fluence 10-100 J/cm?
X-Ray Deposition |1-10 ns
Pulse Width

Pulse Width of ~ 100 ns
Recoil Pressure

Peak Pressure ~ 1 GPa
Impulse 100 Pa-s
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