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Outline

• Motivation
• University of Wisconsin Shock-Tube Laboratory 

(WiSTL)
• Discussion of numerical model
• Discussion of shock structure-interactions
• Shock - Interface Interactions
• Future Directions
• Conclusions
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IFE Reactor Concept
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•Many types of IFE target chambers 
experience significant hydrodynamic motion.

•In gas protected chambers the target X-rays 
and debris ions stop in the gas, however there 
energy generates a blast wave that consists of 
both a shock and radiation wave where the 
strength of both is a function of the opacity of 
the gas.

•Liquid-protected target chambers that are 
initially at low gas density produce significant 
gas densities by vaporization of some of the 
liquid. 
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WiSTL (Wisconsin Shock Tube Laboratory)

Driver

Diaphragm
Section

Interface
Section

Test Section

First Floor

Basement

Second Floor • Vertical Orientation
• Large Internal Square

Cross-Section (25 cm square)
• Total Length=9.3 m
• Driven Length=6.8 m
• Structural Capacity 20 MPa
• Modular Construction

4



Fusion Technology Institute
UW- Madison

Wisconsin Institute of Nuclear Systems
Nuclear Engr & Engr Physics, University of Wisconsin - Madison

W
isconsin Insti tut e

O
f N

ucl ear Syste

ms

WiSTL

Shock cylinder interactions
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RT and RM Instabilities
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• Constant acceleration of light
fluid into heavy fluid

• Propagation of a shock across a 
density interface

• Instability exists independent of 
the direction of propagation of shock

Rayleigh-Taylor instability Richtmyer-Meshkov instability
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Cooling Tubes Modeled as Cylinders
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Test Section Details

Test section: 24 cm diameter, 9 cm thick fused quartz window(s)

8

Window InstalledSingle Cylinder Installed
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Shadowgraph Imaging 9

Nd:YAG, 10ns Pulse Laser (timed from incident shock)
1024x1024 pixel array CCD Camera

mirror

laser

ccd camera

screen

Collimated laser beam

Shock tube
Test section
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Numerical Model
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• Transient, two-dimensional Euler equations
• Godunov scheme + Pike’s (1993) fast exact Riemann solver at 

cell interfaces
• PSM (Piece-wise Spline Method) for data reconstruction of 

fluxes, fourth-order accuracy achieved
• Cartesian grid, time step based on CFL condition (CFL=0.6) for 

stability.
• Computational domain: 35.4 x 25.4 cm; Mesh size:  0.25 mm  

(1418 x 1018) 
• Boundary conditions:  reflective EW (shock tube walls) and 

extrapolate NS (in and out)
• Initial conditions:  top 5 cm is shocked Argon (M=2.75), rest of 

domain is Argon at STP
• Cylinders modeled as circles with reflective boundaries
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Experimental Result
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M=2.75, Rupture P = 1.8MPa
Shock diffraction
pattern at timage=99 µs,
as measure from 
incident shock location
at top of upper cylinder

A. Reflected shocks from upper 
cylinders

B. Reflected shock off lower 
cylinder

C. Contact discontinuities
D. Transmitted shock
E. Gradients due to wall interactions



Fusion Technology Institute
UW- Madison

Wisconsin Institute of Nuclear Systems
Nuclear Engr & Engr Physics, University of Wisconsin - Madison

W
isconsin Insti tut e

O
f N

ucl ear Syste

ms

WiSTL

Diffraction Patterns – Single Cylinder
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timage≈11 µs timage≈47 µs timage≈83 µs
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Diffraction Patterns – Three Cylinders
13

timage≈191 µstimage≈77 µstimage≈36 µs
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Pressure Data for Three Cylinders: 0, 30 and 60° 14
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Pressure Data for Three Cylinders: 120, 150 and 180°
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Vertical Loading of Single Cylinder
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Vertical Loading on Three Cylinders
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Shock Interface Interactions 

Dynamic imaging of the interface, 
prior to being shocked, provides  
interfacial initial condition data for 
each RM experiment.

Provides the interface geometry of 
the initial condition which may be 
used in a numerical simulation.
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•Plate retraction along the line of sight

•Planar Mie scattering visualization

• Heavy gas over lighter gas configuration

• Ar+ cw laser 

• CCD camera: 256 x 256 pixel array, frame rate = 100 fps

Amplitude = 3.18 mm
Wavelength = 38.1 mm
η0/λ = 0.083
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τRT≈110 ms for RM Initial Condition

0 ms 10 ms 20 ms 30 ms 40 ms 50 ms

60 ms 70 ms 80 ms 90 ms 100 ms 110 ms

120 ms 140 ms 160 ms 180 ms 200 ms 220 ms

CO2

Air

19



Fusion Technology Institute
UW- Madison

Wisconsin Institute of Nuclear Systems
Nuclear Engr & Engr Physics, University of Wisconsin - Madison

W
isconsin Insti tut e

O
f N

ucl ear Syste

ms

WiSTL

R-M instability visualization results 

• Very early interaction of the shock wave with the sinusoidal interface
• Development of phase reversal (Heavy/light configuration)

CO2

Air

(a) (b) (c) (d)

• (a): Pre-shocked interface (Note the location of peaks and troughs)
• (b): Shocked interface ~ 5 µs after initial shock acceleration
• (c): Shocked interface ~ 36 µs after initial shock acceleration
• (d): Shocked interface ~ 39 µs after initial shock acceleration
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Shocked Interface with Initial Condition

τRT≈110 ms τRM≈ 646 µs

• Initial condition well into nonlinear regime (η0/λ > 0.2)
• Phase inversion of shocked interface
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Image Analysis

(a) (b) (c)
• (a): Raw experimental image, enhanced in contrast
• (b): Filtered and normalized image
• (c): Extracted interfacial contour  

• Removal of “outlier” noise from nominally dark region
- Application of median filter to minimize blurring

• Extract interfacial contour, measure peak-to-peak amplitude
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Future Directions

In a vertical shock tube, a shock is 
driven to hit a film-supported 
water sheet above the test section 
where a cylinder is located.  All 
the pressure measurements and 
imaging will be taken with several 
techniques at the test section.

Shock

Water 
sheet

Test
Section
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Study of Water Jet Break Up

Some design of ICF reactor use 
jets of liquid metal as a coolant 
to cover the fusion target. 

Study the hydrodynamic 
behavior of liquid jet break up 
and recovery time after the 
disruption.
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Conclusion

• Several experiments are being conducted to study the hydrodynamics 
associated with possible ICF chamber and target designs.

• Experiments have been conducted to study the shock diffraction and 
impulsive force on single cylinder and cylinder array to help in
numerical model validation and to aid in the structural design of 
chamber components .

• Experiments have been performed to study the hydrodynamics of 
target implosions and to determine the RM and RT growth rates

• Future work will concentrate on; numerical studies to find the optimum 
arrangement of cooling tubes, more precise measurement of the initial 
conditions and further diagnostics to measure velocity distribution in the 
RT and RM instability and to look at shock liquid interactions and 
break-up.  
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