

# MCNP/CAD Activities and Preliminary 3-D Results

#### Mengkuo Wang, T. Tautges, D. Henderson, and L. El-Guebaly Fusion Technology Institute University of Wisconsin - Madison

**With input from:** X. Wang (UCSD) and L-P. Ku (PPPL)

#### **ARIES-CS Project Meeting**

June 14 – 15, 2005 UW – Madison



### Outline

| Introduction         | Tim     |
|----------------------|---------|
| 3-D results          | Mengkuo |
| 1-D / 3-D comparison | Laila   |
| Future plan          | Laila   |
| Discussion           | all     |

# Introduction

• Direct vs. translation-based Monte Carlo





- Last time:
  - Plasma surface loading
  - CAD geometry from Pro/Engineer



- CPU time 5 days, 10% statistical error



- LOTS of technical progress since then (MengKuo)
- UW/SNL support from DOE for ITER applications
- Others working on different approaches for similar problems

# Other (DOE) Support: MCNPX/CGM Application to ITER

- DOE funded UW/SNL to apply MCNPX/CGM to ITER modeling
- Initial effort will be on benchmarking direct CAD-based approach against other approaches for "simplified" ITER benchmark model
- Significant issues cleaning up CAD models

- Removing gaps/overlaps
- ITER IT helping with cleanup, interested in improving design processes
- Will fund distributable version of MCNPX/CGM
  - ARIES participants will have access (w/ license detail caveat)

# Others' Work in CAD-Based MC

- Wu et. al (Hefei U, China)
  - Current MCAM version 4
  - Most sophisticated of translation-based approaches
  - 12+ student-person effort (started '98)
  - Will get direct comparison late fall
- LLNL/Raytheon
  - Raytheon's TOPACT code: translation from CAD to MC (TART or MCNP, other CG codes possible)
  - Most recent of translation-based efforts (2-3 yrs old)
  - Still determining the "utility (and readiness) of TOPACT"











Example images courtesy of Steve Manson, Raytheon





# Others' Work in CAD-Based MC (cont)

- Fischer et. al (FZK)
  - Tim visited 4/05
  - Most recently working on automatic complement generation for CAD models
  - Potential collaboration porting CGM to Open-Cascade
- Attila benchmark (Loughlin, UKAEA)
  - Discrete Ordinates-FE approach, but most similar to ours in CAD requirements
  - Took "simplified" ITER benchmark model & further reduced from 930 to 50 bodies
  - Est. 60-90 days to build MCNP input for 50-body model



Reduced (50 bodies)



# Others' Work in CAD-Based MC (cont)

- Other assorted efforts
  - French code "Chavir" for walk-through, robotics
  - Japanese possibly thinking about CAD-based Monte Carlo
- Conclusions
  - Our approach (ray tracing/geometry <u>in CAD</u>, transport physics <u>in MCNPX</u>) still unique
  - For ARIES-CS, still only viable approach
    - Complex plasma surface definition (high-order NURBS in CAD)
    - Production-level Monte Carlo code



# Last September Meeting

- Plasma surface overlap
   with First Wall surface
   (Use plasma surface for
   wall loading calculation)
- 2. Low computation speed (5 days computation, statistical error 10%)







## Latest Achievements

 Successfully constructed the Stellerator surfaces, from First Wall to Manifolds

2. High performance computational algorithm using facet based model for wall loading ( $\Gamma$ )

3. 1 hour computation with 1% statistical error







#### Stellerator Model

- High precision
   profile: 1e-15
   precision
- 2. Offset each profile curve
- 3. Used 72 profile

curves to generate each Stellerator surface





# Computation: Wall Loading



#### 9 Xns of Plasma Boundary (red) and WP Center (green) Covering 1/2 Field Period (~9 m)





Neutron Wall Loading (~1% Statistic error)





# **Computation Model**





わわわわわわわわわわわれ

# **WISCONSIN** Materials for Reference Radial Build

わわわわわわわれ

| Нотодороо | us composition.                                                                             | 185    | 3.8 | 54.3    | 5        | 18     |         |
|-----------|---------------------------------------------------------------------------------------------|--------|-----|---------|----------|--------|---------|
| FW        | 34% FS Structure<br>66% He Coolant                                                          | -      |     |         |          |        | ds      |
| Blanket   | 79% LiPb (90% enriched Li)<br>7% SiC Inserts (95% d.f.)<br>6% FS Structure<br>8% He Coolant | Plasma | I H | Blanket | Back Wal | Shield | Manifol |
| Back Wall | 80% FS Structure<br>20% He Coolant                                                          | <br>   |     |         |          |        |         |
| FS Shield | 15% FS Structure<br>10% He Coolant<br>75% Borated Steel Filler                              |        |     |         |          |        |         |
| Manifolds | 52% FS Structure<br>24% LiPb (90% enriched Li)<br>24% He Coolant                            |        |     |         |          |        |         |
|           |                                                                                             | z      |     |         |          |        |         |



**3D** Result

| Local TBR                         | 1.316   | ± 0.61% |
|-----------------------------------|---------|---------|
| <b>Energy multiplication (Mn)</b> | 1.143   | ± 0.49% |
| Average dpa rate (dpa/FPY)        | 29.5    | ± 0.66% |
| Peak dpa rate (dpa/FPY)           | 39.4    | ± 4.58% |
| FW/B lifetime (FPY)               | 5.08    | ± 4.58% |
| Nuclear heating (MW):             |         |         |
| • FW                              | 145.03  | ± 1.33% |
| • Blanket                         | 1585.03 | ± 0.52% |
| • Back wall                       | 9.75    | ± 6.45% |
| • Shield                          | 62.94   | ± 2.73% |
| Manifolds                         | 19.16   | ± 5.49% |
| • Total                           | 1821.9  | ± 0.49% |



### 1-D Cylindrical Model (nominal blanket/shield region)

, NATARA MARAKA MARA

| Homogeneous | composition:                                                                                |   | 185  | 38             | 54.2 | 5    | 10  | 35 cm  |
|-------------|---------------------------------------------------------------------------------------------|---|------|----------------|------|------|-----|--------|
| FW          | 34% FS Structure<br>66% He Coolant                                                          | I | 105  | 1 <sup>5</sup> | 54.5 | 5    | 10  |        |
| Blanket     | 79% LiPb (90% enriched Li)<br>7% SiC Inserts (95% d.f.)<br>6% FS Structure<br>8% He Coolant |   | asma |                | ıket | Wall | eld | ifolds |
| Back Wall   | 80% FS Structure<br>20% He Coolant                                                          |   | PI   |                | Blan | Back | Shi | Mani   |
| FS Shield   | 15% FS Structure<br>10% He Coolant<br>75% Borated Steel Filler                              |   |      |                |      |      |     |        |
| Manifolds   | 52% FS Structure<br>24% LiPb (90% enriched Li)<br>24% He Coolant                            |   |      |                |      |      |     |        |

3 MW/m<sup>2</sup> for peak dpa 2 MW/m<sup>2</sup> for total nuclear heating Uniform blanket/shield, 100% coverage (no divertor, no penetrations, no gaps)



# 1-D / 3-D Comparison

|                                                            | <u>1-D</u>                              | <u>3-D</u>                                           |                                             |
|------------------------------------------------------------|-----------------------------------------|------------------------------------------------------|---------------------------------------------|
| Local TBR                                                  | 1.285                                   | 1.316 ± 0.61%                                        |                                             |
| Energy multiplication (M <sub>n</sub> )                    | 1.14                                    | 1.143 ± 0.49%                                        |                                             |
| Average dpa rate (dpa/FPY)                                 | 26                                      | 29.5 ±0.66%                                          |                                             |
| Peak dpa rate (dpa/FPY)                                    | 40                                      | 39.4 ± 4.58%                                         |                                             |
| FW/B lifetime (FPY)                                        | 5                                       | 5.08 ± 4.58%                                         |                                             |
| Nuclear heating (MW):                                      |                                         |                                                      |                                             |
| FW<br>Blanket<br>Back wall<br>Shield<br>Manifolds<br>Total | $156 \\ 1572 \\ 13 \\ 71 \\ 18 \\ 1830$ | $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$ | 3%<br>2%<br>45%<br>73%<br><u>49%</u><br>49% |



### Remarks

• Slight disagreement between 1-D and 3-D results attributed to differences in analyses:

|                       | <u>1-D</u>                                    | <u>3-D</u>                       |
|-----------------------|-----------------------------------------------|----------------------------------|
| Plasma shape          | cylindrical                                   | actual                           |
| n source distribution | uniform<br>over 1/2 plasma                    | actual                           |
| NWL distribution      | uniform<br>⇒ more reflection<br>from off peak | non-uniform<br>⇒ less reflection |
| Cross section data    | multi-group                                   | pointwise                        |
| Library               | FENDL-2.0                                     | FENDL-2.1                        |



# Future Plan

- To estimate overall TBR &  $M_n$ , include in 3-D model:
  - Shield-only zone
  - Transition region
  - Divertor system
  - Penetrations.



- Need better CAD exchange method
  - Double-precision input to generate cross-sections, fitted plasma surface
  - Mengkuo Wang's work based on ACIS engine using equations from L-P Ku
  - Collaborative addition of engineering features to Mengkuo's model(e.g. divertor system, shield-only and transition zones, penetrations)
- Publications?