

Nuclear Issues for LiPb/FS/He System with Internal VV

Laila El-Guebaly

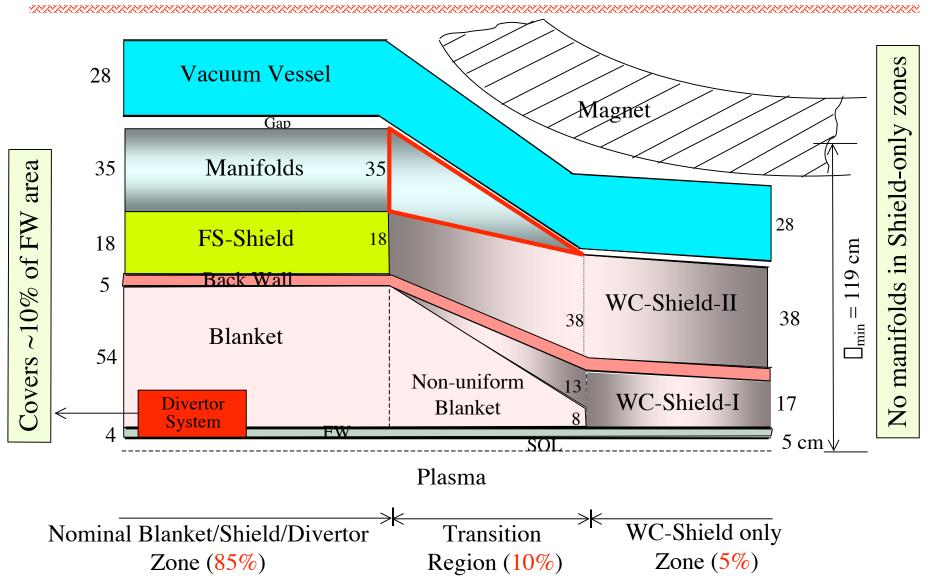
Fusion Technology Institute University of Wisconsin - Madison

With input from:

R. Raffray, X. Wang (UCSD), S. Malang (Germany), and J. Lyon (ORNL)

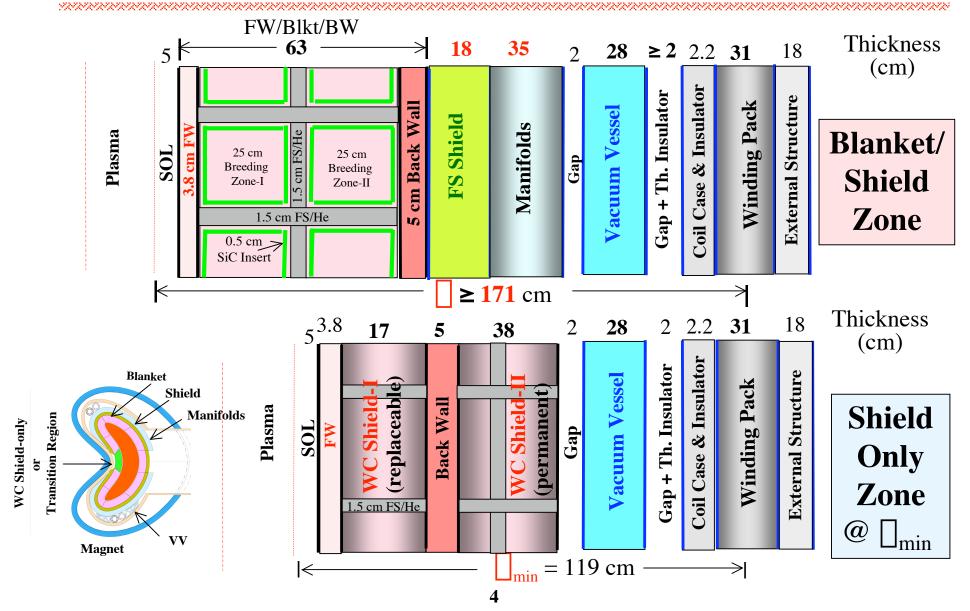
ARIES-CS Project Meeting

June 14 – 15, 2005 UW – Madison



Contents

- Reference radial build.
- Hot spots behind LiPb/He access tubes.
- Thermal power split between LiPb and He coolants.
- LiPb decay heat for LOCA/LOFA.
- Radwaste volume comparison.
- Future plan.


Radial/Toroidal Cross Section

Reference Radial Build

 $(3 \text{ MW/m}^2 \text{ peak } \square)$

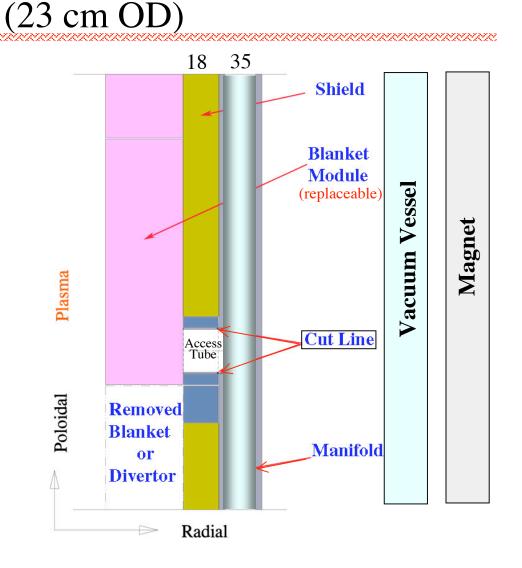
Composition (Nominal Blanket/Shield and Shield-only zones) (no divertor info)

Component	Thickness	Coverage Fraction	Composition	
\mathbf{FW}^*	3.8 cm	100%	34% FS Structure 66% He Coolant	
Blanket*	54.3 cm	85%#	79% LiPb (90% enriched Li) 7% SiC Inserts (95% d.f.) 6% FS Structure 8% He Coolant	
Back Wall*	5 cm	100%	80% FS Structure 20% He Coolant	
FS Shield	18 cm	85%	15% FS Structure 10% He Coolant 75% Borated Steel Filler	
Manifolds	35 cm	85%	52% FS Structure 24% LiPb (90% enriched Li) 24% He Coolant ?% SiC Inserts ???	
WC Shield-I* (shield-only zone)	17-21 cm	5%	88% WC Filler 5% FS Structure 7% He Coolant	
WC Shield-II (shield-only zone)	38 cm	5%	15% FS Structure 10% He Coolant 75% WC Filler	
* Replaceable component	28 cm	100%	28% FS Structure 49% Water 23% Borated Steel Filler	

^{*} Replaceable component.

[#] For blanket and divertor,

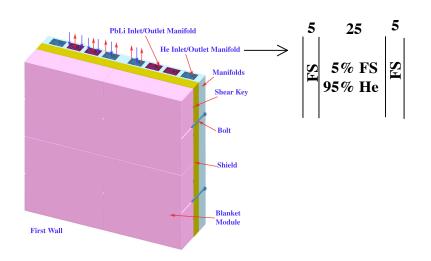
Composition (Transition Region)

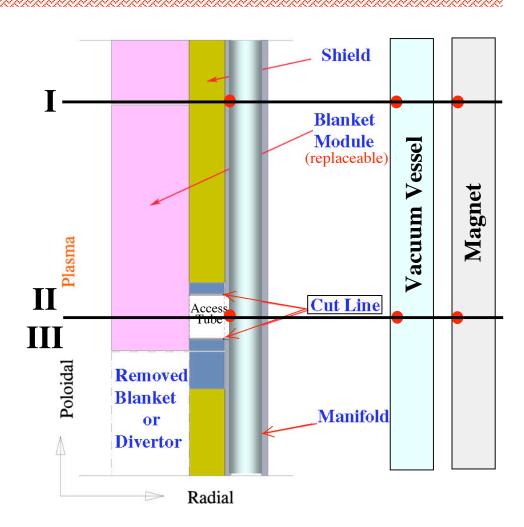

Component	Av. Thickness	Coverage Fraction	Composition
\mathbf{FW}^*	3.8 cm		34% FS Structure 66% He Coolant
Blanket*	31 cm	10%	~79% LiPb (90% enriched Li) ~7% SiC Inserts ~6% FS Structure ~8% He Coolant
Back Wall*	5 cm		80% FS Structure 20% He Coolant
WC Shield-I*	7 cm	10%	88% WC Filler 5% FS Structure 7% He Coolant
WC Shield-II	28 cm	10%	15% FS Structure 10% He Coolant 75% WC Filler
Manifolds	17 cm	10%	52% FS Structure 24% LiPb (90% enriched Li) 24% He Coolant ?% SiC Inserts ???
VV	28 cm		28% FS Structure 49% Water 23% Borated Steel Filler

^{*} Replaceable component.

Neutron Streaming Through He/LiPb Access Tubes

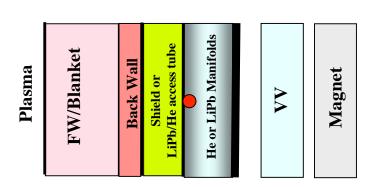
- 18 cm thick shield along with He manifolds protect VV and magnet.
- 18 cm shield does <u>not</u> allow reweldability of manifolds.
- 206 access tubes for <u>each</u> coolant (4 He and 4 LiPb access tubes / m).
- Neutrons streaming through access tubes result in hot spots at VV and magnet.
- Damage behind He access tubes could be excessive (He replaces 22 cm of FS).
- 2-D analysis needed to confirm 1-D findings.

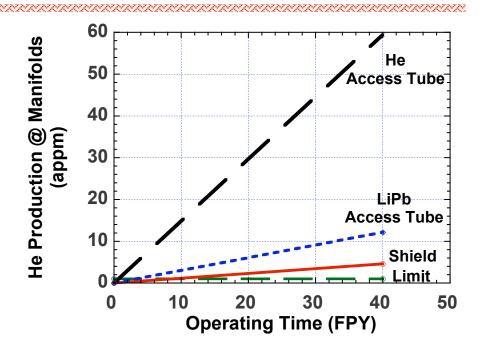




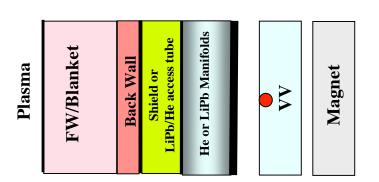
Neutron Streaming Through He/LiPb Access Tubes (Cont.)

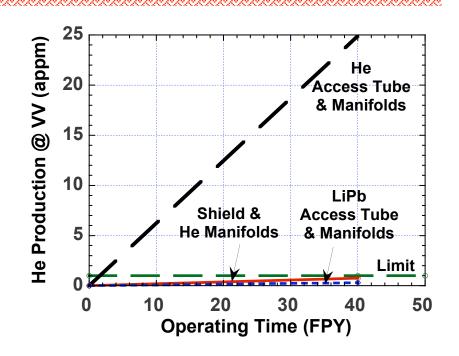
(23 cm OD)


- 1-D analyses performed at 3 cross sections:
 - I- Blanket, shield, He manifolds
 - II- Blanket, LiPb access tube, and LiPb manifolds
 - III- Blanket, He access tube, and He manifolds.
- <u>Conservatively</u> estimated:
 - He production at manifolds
 - He production at VV
 - Fluence at magnet.



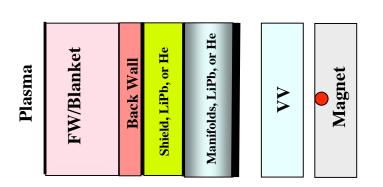
He Production at Manifolds

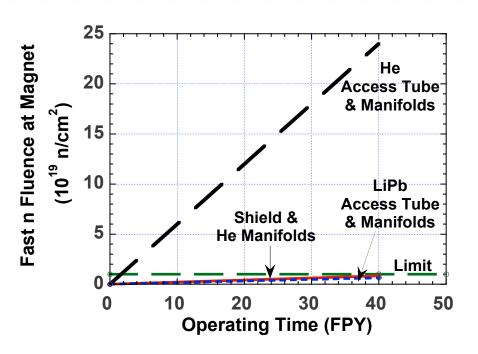



He production at manifolds is excessive

☐ Modify design to allow reweldability of manifolds

He Production at VV



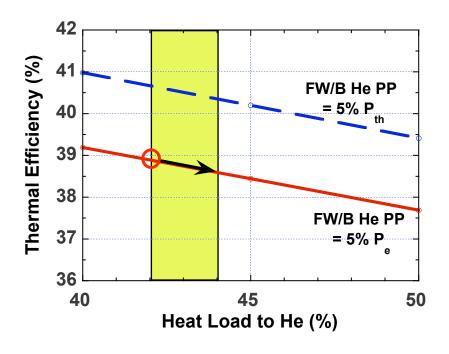

VV cannot be rewelded after few FPY

~25 cm local shield behind 206 He access tubes helps protect VV and magnet. Practical?

Fluence at Magnet

High n fluence behind He access tubes degrades J_c of superconductor

Innovative solutions must be developed to solve streaming problems


Thermal Power Split between LiPb and He Coolants

 $(2 \text{ MW/m}^2 \text{ av.} \square)$

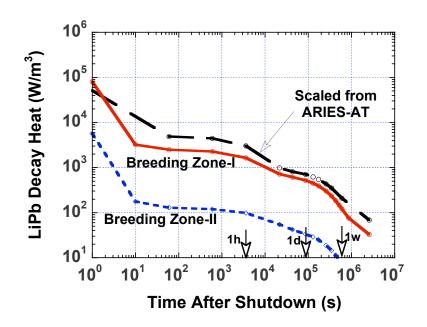
• Assumptions:

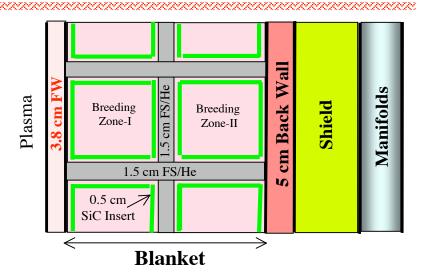
- Full blanket coverage (no shield-only zones)
- 415 MW surface heating to FW and divertor
- 90% of He pumping power recovered as thermal heat
- 100 MW heat leak from hot LiPb to colder He
- No info on divertor He PP.

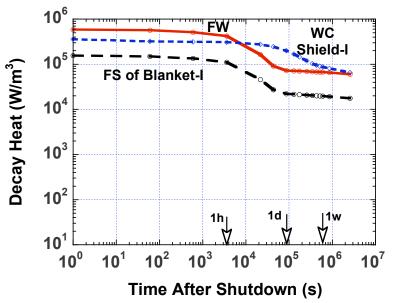
Heat Load (MW)	He	LiPb
Surface Heating	415	
90% of FW/B He PP	45	
\mathbf{FW}	160	
Breeding Zone-I	108	1122
Breeding Zone-II	23	303
Back wall	12	
Shield/Manifolds	76	4
Leakage from LiPb to He	<u>100</u>	<u>– 100</u>
Total	~940	~1330
	(~42%)	(~ 58 %)

Including shield-only zones and divertor He PP increase heat load to He

$$\Box$$
 \Box _{th} < 39%

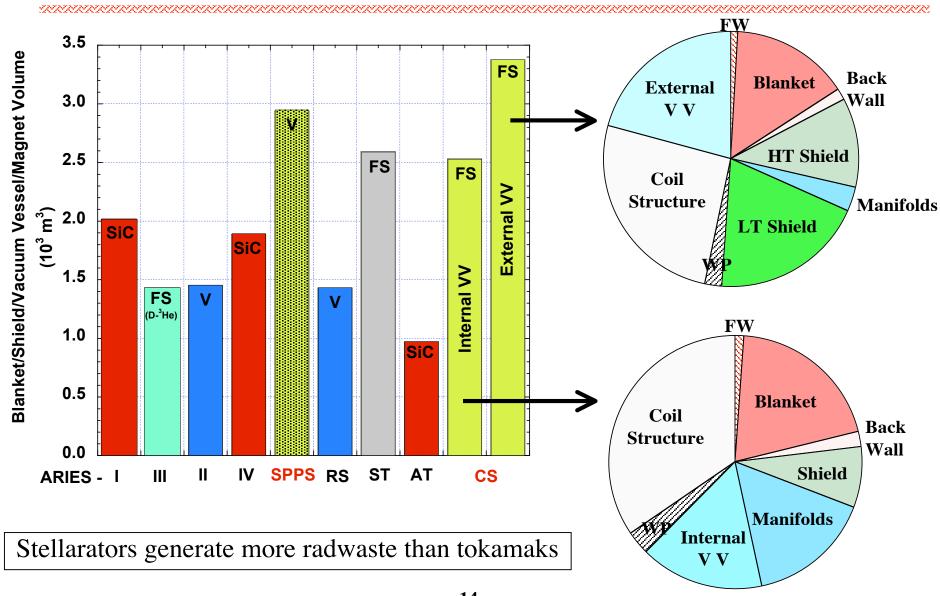



LiPb Decay Heat


 $(2 \text{ MW/m}^2 \text{ av.} \square)$

• Assumptions:

- $-\text{LiPb V}_{\text{out}}/\text{V}_{\text{in}} \sim 1.5$
- In-blanket residence time ∼1 min
- Ex-vessel residence time ~1.5 min
- LiPb contains no T (removed online)
- 40 FPY of operation with 85% avail.



Radwaste Volumes

(un-compacted, no replacements) (ARIES-CS: 3 FP, R=8.25 m, 100% blanket coverage)

Reference Radial Build and Composition

posted @

http://fti.neep.wisc.edu/aries-cs/builds/build.html

& Updated after each project meeting

to reflect latest changes to nuclear parameters and dimensions/compositions of ARIES-CS components

(FW, blanket, shield, VV, and magnet)

Future Plan

- If needed, include He manifolds in radial build of shield-only zones and readjust \square_{\min}
- Assess impact of divertor system on overall TBR using 1-D and/or 3-D!
- UW/UCSD solve streaming problem for He access tubes.
- Confirm with 2-D estimate for damage behind modified access tubes.
- Update magnet dimension and composition, if available.
- Develop radial build for 2 FP configuration, if needed.
- Publications:

Incorporate reviewers' comments and submit final version to:

- FS&T journal:

Evolution of Clearance Standards and Implications for Radwaste Management of Fusion Power Plants

L. El-Guebaly, P. Wilson, and D. Paige

- FED journal:

Managing fusion high level waste – a strategy for burning the long-lived products in fusion devices

L. El-Guebaly

Potential coatings for Li/V system: nuclear performance and design issues L. El-Guebaly

Prepare manuscript for ICFRM-12 conference (12/05):

The Feasibility of Recycling and Clearance of Active Materials from a Fusion Power Plant

M. Zucchetti, L. El-Guebaly, R. Forrest, T. Marshall, N. Taylor, K. Tobita