Radial Build Definition for LiPb/SiC and Flibe/FS Systems

Laila El-Guebaly

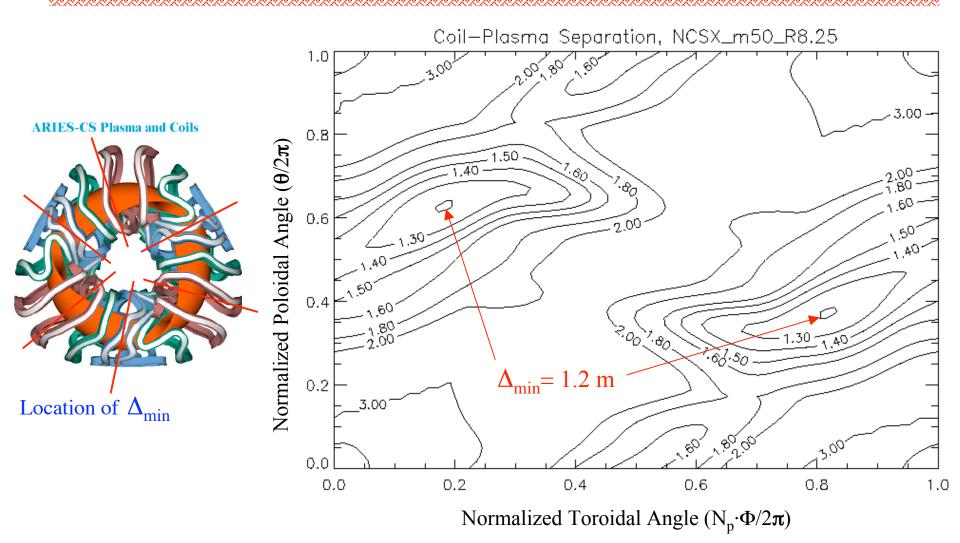
Fusion Technology Institute University of Wisconsin - Madison

With Input from:

L.P. Ku (PPPL), R. Raffray, X. Wang (UCSD), S. Malang (FZK), B. Merrill (INEEL), and L. Bromberg (MIT)

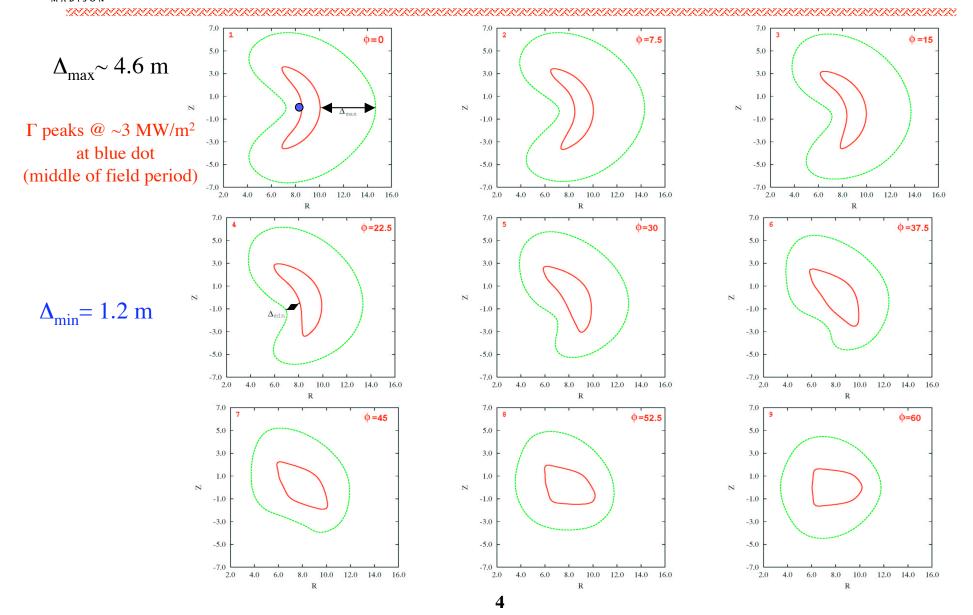
http://fti.neep.wisc.edu/FTI/ARIES/MAY2003/lae_radialbuild.pdf

ARIES-CS Project Meeting May 7, 2003 Livermore, CA

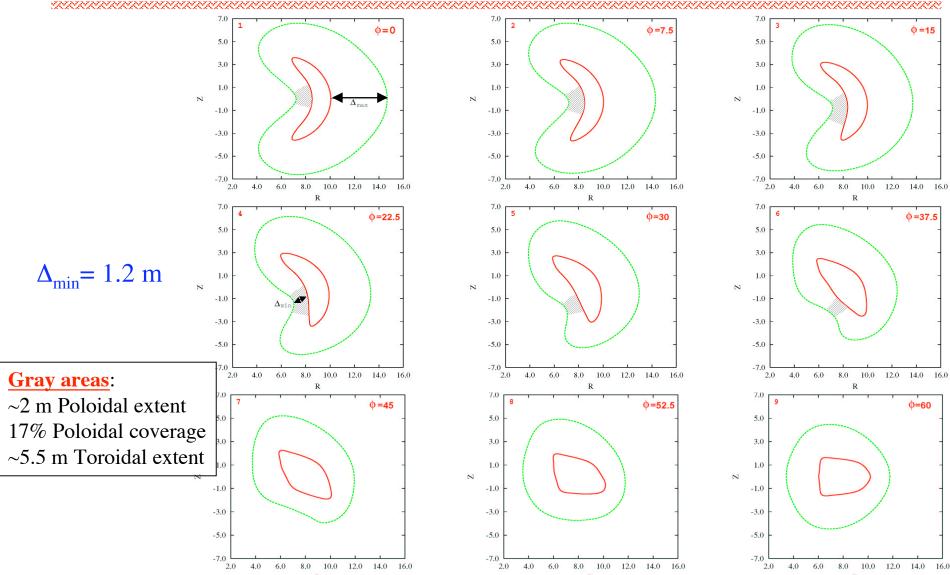

Initial Parameters

Net Electric Power	1000 MW _e
# of Field Periods	3
A	4.5
< R >	8.25 m
<a>>	1.85 m
Average Neutron Wall Loading (Γ)*	2 MW/m^2
FW Area	$\sim 800 \text{ m}^2$
Toroidal Length of Field Period	~ 9 m
Minimum Plasma-to-Coil Center Distance (Δ_{min})	1.2 m
# of Δ_{\min} per Field Period	2
FW Coverage Fraction for Shield-only Zones	8%

^{*} Corresponding peak Γ is ~3 MW/m².



∆_{min} Occurs Twice per Field Period

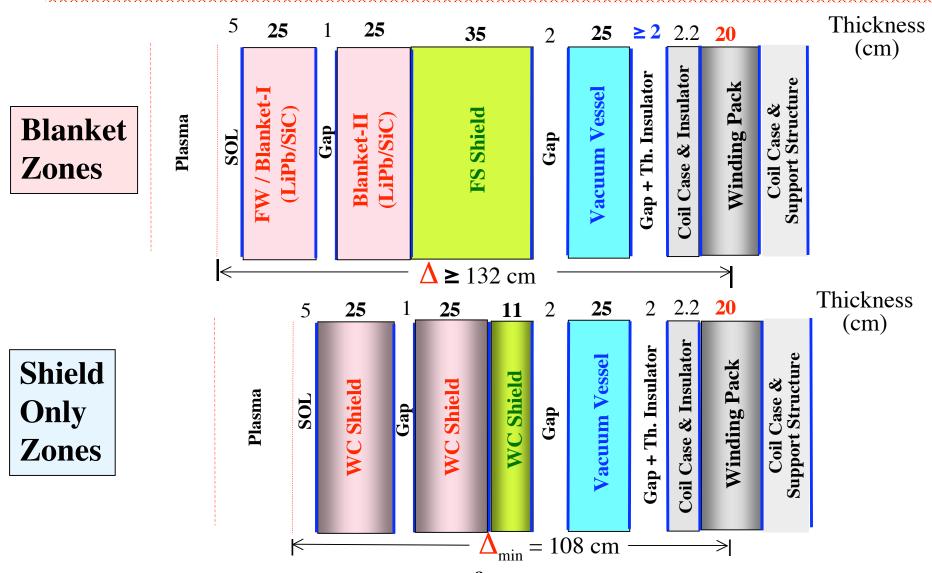


9 Xns of Plasma Boundary (red) and WP Center (green) Covering Half Field Period (~9 m)

Transition Region Between Δ_{min} and Δ_{min} + 0.2 m Covers ~8% of FW Area

Design Requirements and Radiation Limits

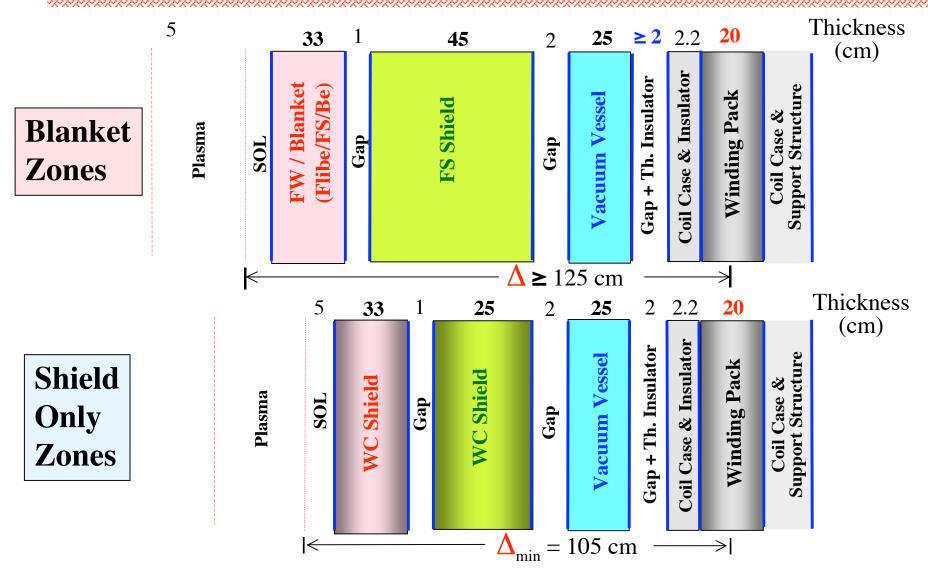
Overall TBR (for T self-sufficiency)	1.1
Burnup for SiC/SiC Composites (for structural integrity)	3%
dpa to FS Structure (for structural integrity)	200 dpa
Helium production @ VV (for reweldability of FS)	1 appm
LT S/C Magnet (@ 4K): n fluence to Nb ₃ Sn (E _n > 0.1 MeV) Dose to polyimide insulator Nuclear heating dpa to Cu stabilizer	10 ¹⁹ n/cm ² 10 ¹¹ rads 2 mW/cm ³ 6x10 ⁻³ dpa
Biological dose outside building (for workers and public protection)	2.5 mrem/h


Assumptions

- Peak to average $\Gamma = 1.5$
- Penetrations occupy 2% of FW area.
- Divertor plates/baffles:
 - 5 cm thick
 - 50% structure and 50% coolant
 - Cover 15% of FW area.
- ARIES-AT FW/blanket composition for LiPb/SiC concept.
- SPPS magnet composition.
- 1-D poloidal neutronics model with av. a = 1.85 m.

Recommended LiPb/SiC Radial Build

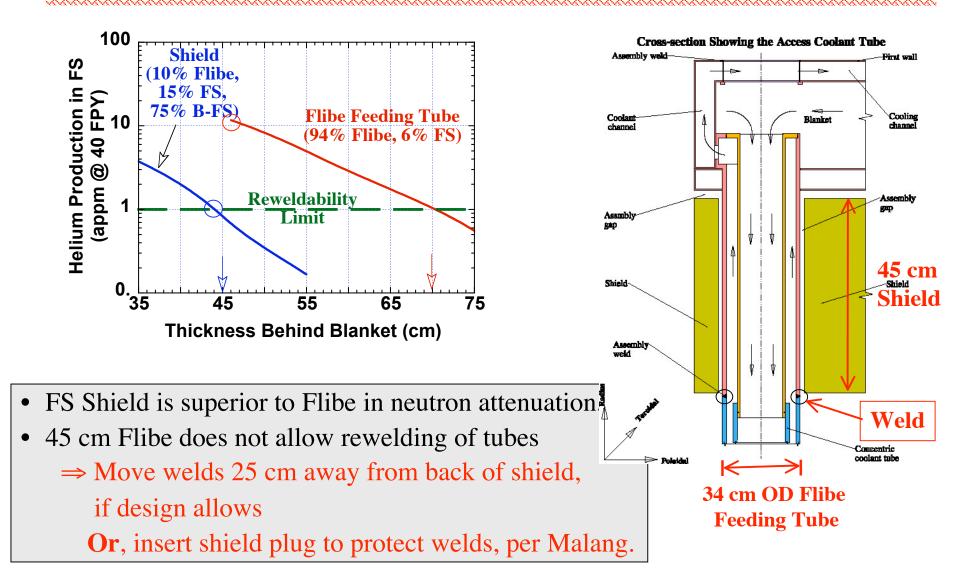
(Schematic; not to scale)


LiPb/SiC System

Components	Composition
Replaceable Blanket-I	79% LiPb with 90% enriched Li 21% SiC/SiC Composite Structure
Permanent Blanket-II	79% LiPb with 90% enriched Li 21% SiC/SiC Composite Structure
FS Shield	15% SiC/SiC Composite Structure 10% LiPb 75% Borated Steel Filler
WC Shield	20% SiC/SiC Composite Structure 10-15% LiPb 65-70% WC Filler
VV	28% FS Structure 49% Water 23% Borated Steel Filler
Winding Pack (Composition not available. Used SPPS')	25% Incoloy Structure 20% Cu Stabilizer 15% Nb ₃ Sn + Conduit 25% GFF Polyimide 15% LHe

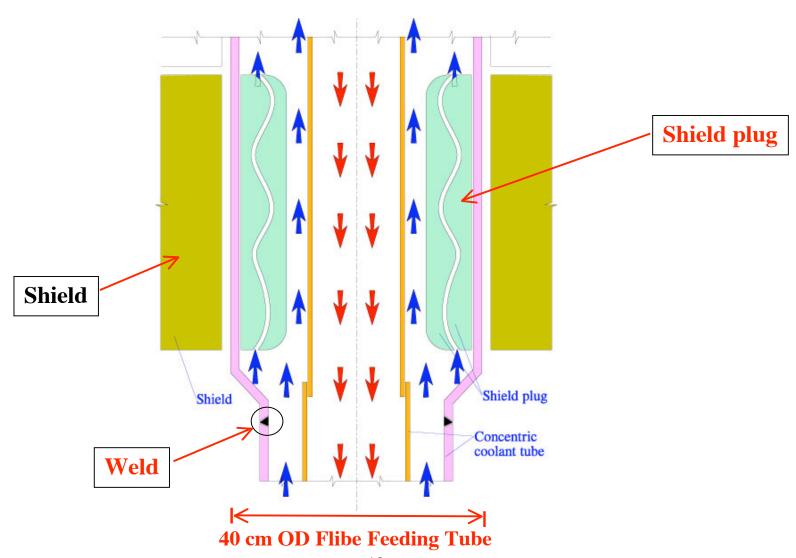
Recommended Flibe/FS Radial Build

(Schematic; not to scale)

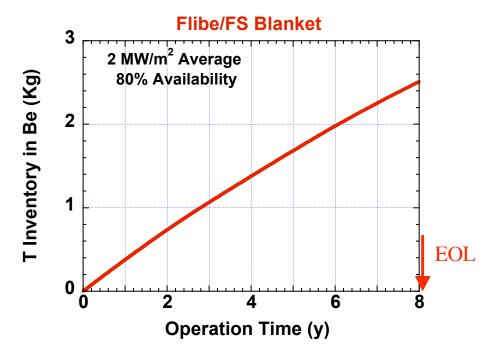


Flibe/FS System Updates

Components	Composition
Blanket	82% Flibe with 30% enriched Li 10% FS Structure 8% Be
FS Shield	15% FS Structure 10% Flibe 75% Borated Steel Filler
WC Shield	10-15% FS Structure 10-15% Flibe 75% WC Filler
VV	28% FS Structure 72% Borated Water
Winding Pack (Composition not available. Used SPPS')	25% Incoloy Structure 20% Cu Stabilizer 15% Nb ₃ Sn + Conduit 25% GFF Polyimide 15% LHe



Excessive Helium Generation at Welds of Flibe Feeding Tube


Shield Plug Protects Welds of Feeding Tubes (Wang's Drawing)

Tritium Bred in Beryllium Raises Safety Concern, Unless Released

Assuming no T release, T inventory in Be reaches **2.5 kg at EOL** (6.5 FPY, 8.1 y)

Per B. Merrill:

- T release is temperature and fluence dependent (800 °C @ BOL and 600 °C @ EOL).
- Bakeout helps release some of T. Remaining inventory is unknown.
- T inventory exceeding 1 kg raises safety concern in accidents driving Be above 800 °C.

ARIES-CS Offers 6-28% Reduction in B/S/VV Thickness Relative to SPPS, Despite Higher Γ

	SPPS	ARIES-CS			
	<u>Li/V</u>	Flib		LiPb/S	
		Blanket and Shield	Shield only	Blanket and Shield	Shield only
Peak Γ (MW/m ²)	2	3	3	3	3
Thickness (cm):					
FW/Blanket-I	36	33	33	25	25
Gap	_	_	_	1	1
FW/Blanket-II	_	_	_	25	25
Gap	2	1	1	_	_
HT Shield	45	45	25	35	11
Gap	2	2	2	2	2
VV or LT Shield	35	25	25	25	25
Total B/S/VV	120	106	86	113	89
Net Saving	-	14	34	7	31

More Reduction (33-46%) in Δ_{min} due to Thinner SOL and Magnet

	SPPS	ARIES-CS			
	<u>Li/V</u>	Flibe/FS		<u>LiPb/SiC</u>	
		Blanket and Shield	Shield only	Blanket and Shield	Shield only
Thickness (cm):					
SOL	15	5	5	5	5
B/S/VV	120	106	86	113	89
Gap + Th. Insl.	≥ 8	≥ 2	≥ 2	≥ 2	≥ 2
Cryostat#	15	2.2	2.2	2.2	2.2
1/2 Winding Pack	38	10	10	10	10
Δ	196	125	105	132	108
Net Saving	_	71	91	64	88

[#] Coil case and electric insulator.

Reduction in Δ_{min} translates into smaller R and lower B_{max} relative to SPPS

WC-Shield-Only Zones Introduce Engineering Problems

• Benefits:

- 15-20% thinner radial build
- 15-20% smaller R
- Lower COE!?

• Potential engineering problems:

- Integration of WC-shield with blanket system
- Accommodation of WC decay heat removal loop
- Any WC high level waste?
- Heavy WC zones ⇒ Smaller, many modules (≤ 3 tonnes each)
 - ⇒ Longer replacement time
 - ⇒ Lower availability !?

# of Modules*	Blanket only	Blanket + WC-Shield
Flibe System	~ 66	60 + 70 = 130
LiPb System	~ 35	32 + 45 = 77

^{* 3} tonnes each module; WC shield covers 8% of FW area.

Key Parameters for ARIES-CS System Analysis

	Flibe/FS/Be	LiPb/SiC
TBR	1.1	1.1
Energy Multiplication	1.2	1.1
Thermal Efficiency	45%	~60%
FW Lifetime (FPY)	6.5	6
Replaceable Blanket: Thickness (cm) Mass (tonnes) Cost* (M\$)	33 197 27	$\begin{array}{c} 25 \\ 105 \\ 42 \end{array} (\Rightarrow \text{Fewer modules})$
System Availability	80%	> 80%

^{*} FS @ \$70/kg, Be @ \$610/kg, SiC/SiC @ \$400/kg

Integrated system analysis could assess impact on COE

Conclusions

- Initial Δ estimates of 125 cm and 133 cm seem adequate for Flibe/FS and LiPb/SiC systems, respectively, based on 1-D analysis and several assumptions
- 20-24 cm reduction in radial build is achievable with shield-only zones at Δ_{min} locations, pending significant saving in COE and innovative solutions to WC shielding problems.
- As design progresses, 3-D nuclear analysis is needed to:
 - Generate neutron wall loading profile using CAD-MCNP interface*
 - Confirm key nuclear parameters (TBR, M_n , lifetime, Δ_{min} etc)
 - Determine boundary between replaceable and permanent components.
- Reported <u>preliminary</u> nuclear parameters may change as design develops and/or as more rigorous 3-D analyses are performed.

^{*} Under development at UW.