Shielding Protection Schemes for Final Optics

L. El-Guebaly

Fusion Technology Institute University of Wisconsin - Madison

With input from M. Sawan (UW) and L. Waganer (Boeing)

ARIES Project Meeting 7-8 June 2001 UCSD

Objectives

- Review shielding schemes and streaming analysis performed over past 25 years
- Highlight shielding-related :
 - Features
 - Issues/concerns
 - Findings
 - Recommendations
- Develop shielding criteria for ARIES-IFE
- Propose protection scheme for ARIES-IFE optics

Both Laser and Pre-formed-plasma-channel-based HIB Drivers Employ Final Optics for Laser Transmission

Schematic of Final Transport System for Pre-formed-Channel-based HIB Driver

Reference: S. Yu et al., Nuclear Instruments and Methods A415 (1998) 174

Reactor

Schematic of Final Optics

- Target ion debris
- Vapor from liquid walls

M-II mirror:

- Referred to as final focusing, turning, second, next to last, or dielectric coated
- Subject to:
 - Secondary n's (< 10% 14 MeV n's) scattered from M-I and building ٠
 - \Rightarrow lower damage, longer lifetime compared to M-I
 - γ -rays and target x-rays scattered from M-I
- DPSSL driver employs wedges instead of M-I mirrors Windows serve as vacuum and T barriers

Background

- Optics lifetime is strong function of:
 - Radiation damage limit (unknown)
 - **Distance** from target
 - Size of beam port
 - Damage fraction recovered by annealing
 - Shielding protection schemes (applicable to M-II only)
 - Design approaches to accommodate radiation-induced swelling
- Annealing of optics at high temperature reduces laser absorption, removes radiation defects, and prolongs lifetime
- DPSSL driver calls for up to 20 times larger beam ports compared to KrF driver

Background (Cont.)

- Candidate final optics materials:
 - Mirrors:
 - Substrates: Al alloys, SiC/SiC, or C/C
 - Coolants: H₂O, He, or LN2
 - Coatings:
 - Metallic: Al, Mg, Cu, Ag, or Au
 - Oxide: Al_2O_3 (~10 nm)
 - Dielectric: ZnS or MgF₂
 - Liquid (~100 μm): Li, Na, Ga, Al, or Pb
 - Wedges: SiO_2 or CaF_2
 - Windows: SiO₂
- Neutron flux at M-I is dominated by 14 MeV source n's and can be estimated analytically. 1-D analysis provides fairly accurate radiation damage and lifetime for M-I
- 3-D analysis is essential for M-II radiation damage/lifetime

Radiation Issues/Concerns

- Metallic mirrors and wedges:
 - n & γ radiation degrade optical performance, deteriorate focusing quality, and increase laser absorption by introducing:
 - Defects: vacancies and interstitials from atomic displacements, color centers (darkness)
 - Transmutations (10⁴-10⁵ less damaging than defects)
 - Densification with radiation dose
 - Surface roughening due to sputtering
 - Swelling causing surface undulations and defocusing
 - Deformation by swelling and creep could limit lifetime if radiationinduced degradations by other mechanisms are tolerable (< 1%)

Radiation Issues/Concerns (Cont.)

• Dielectric mirrors:

- n's destroy dielectric coatings by:
 - Chemical decomposition (radiolysis)
 - Destroying interface between layers
- Experimental measurements^{*} indicated factor of 10 degradation in mirrors' optical properties at fast n fluence of 10^{16} - 10^{17} n/cm² (E_n > 0.1 MeV)

 \Rightarrow Unshielded dielectric mirrors will not last more than one hour

Move dielectric mirrors away from direct-line-of-sight of source n's

Develop radiation-resistant dielectric coatings

• Liquid mirrors:

– Disturbance of liquid surface by n & γ heating

^{*} Reference: R. Bieri and M. Guinan, "Grazing incidence metal mirrors as the final elements in a laser driver for inertial confinement fusion", UCRL JC-103817 (Oct 1990)

Al₂O₃ Coating Exhibits High Swelling Compared to MgO and Spinel^{1,2}

- Spinel (MgAl₂O₄) offers lowest n-induced swelling and could be considered as oxide coating. Optical properties need to be checked³
- Harder fusion spectrum reduces fission fluence limit for swelling by factor of ~ 2
- Fast n fluence, dpa, dose, and swelling are interrelated

³⁻ A.Ibarra et.al., "Neutron-induced changes in optical properties of MgAl₂O₃ spinel", Journal of Nuclear Materials 219 (1995) 135-138

Fusion Technology Institute University of Wisconsin - Madison

 ^{*} Refs: 1- L. El-Guebaly, "Materials Problems for Highly Irradiated ICRH Launchers in Fusion Reactors," Fusion Technology <u>8</u> (1985) 553
 F. Clinard and G. Hurley, Journal of Nuclear Materials <u>108 & 109</u> (1982) 655

²⁻C. Kinoshita et.al.,"Why is magnesia spinel a radiation-resistant material?, Journal of Nuclear Materials 219 (1995) 143-151

Neutron Wall Loading @ Mirrors

(assuming normal n incidence and all optics in direct-line-of-sight of target)

- 0.06-0.4 MW/m² will degrade M-I optical properties and activate materials
- Grazing incidence reduces M-I Γ by $\cos \theta^*$ (flux and damage will not change)
- Offsetting M-II softens n spectrum and reduces fast n flux by 2-3 orders of magnitude ⇒ longer life

* Angle between beam and normal to mirror

Fusion Technology Institute University of Wisconsin - Madison

Radiation Effects @ M-I (Assuming bare Al mirror @ 30 m from target)

Target yield	160 MJ	400 MJ
Fast n fluence (n/cm ² s @ 1 FPY, $E_n > 0.1$ MeV)	2e20	5e20
Fast n flux $(n/cm^2s, E_n > 0.1 \text{ MeV})^n$	6.7e12	1.7e13
Total n flux (n/cm^2s)	1.1e13	2.7e13
Total γ flux (γ /cm ² s)	8.6e12	2e13
Atomic displacement (dpa/FPY)	0.4	1
Nuclear heating (W/cm^3) :		
n	0.07	0.18
γ	0.12	0.3
Total	0.2	0.48
Dose (rads/s):		
n	2.7e3	6.7e3
γ	4.5e3	1.1e4
Total	7.2e3	1.8e4

• Reported peak values vary as $1/r^2$ and scale roughly with target yield

• For Al: 1 dpa
$$\equiv 5.4e20 \text{ n/cm}^2 (\text{E}_n > 0.1 \text{ MeV})$$

 $\equiv 1-3\% \text{ swelling }?$
 $\equiv 6e11 \text{ rads}$
 $1 \text{ n/cm}^2 (\text{E}_n > 0.1 \text{ MeV}) \equiv 4e-10 \text{ rads}$
 $1 \gamma/\text{cm}^2 \equiv 5e-10 \text{ rads}$

Several Designs Developed Mirror's Protection Schemes Over Past 25 years

Fusion Technology Institute IFE/ICF Reactor Studies

Calendar Year

*in conjunction with other universities, national and international labs

Most Design Studies Performed						
3-D Streaming Analysis						
Study	Institute**	Year of Study	3-D Analysis?	Scaled from Previous UW 3-D Analysis?		
SOLASE*	UW	1977	yes	•		
SENRI-I	Japan	1982	yes			
SIRIUS-M*	UW	1988	yes			
GIMM	LLNL	1990	yes			
SOMBRERO	UW	1992		yes		
Prometheus	MDA/UCLA	1992		yes		
SIRIUS-P*	UW	1993	yes			
SOMBRERO- with DPSSL	LLNL	1999	yes			
ARIES-IFE [#]	UW	2001-2002	yes			

** Performed nuclear analysis
 * Extensive shielding analysis
 # Ongoing study

ARIES-IFE Shielding Criteria

- Criteria developed to judge merits of potential shielding scheme
- Criteria are related to neutronics, final optics system, pumping requirements, maintenance, and safety tasks. They include:
 - Effectiveness of shielding approach
 - Maintainability of building internals after shutdown
 - Accessibility of final optics with remote handling equipment
 - Tritium-contaminated area
 - Volume of penetration shield
 - Evacuated volume
 - Others:
 - Waste issues (level, volume, etc. May limit GIMM lifetime or material choices)
 - Survivability of final optics (may call for multiple defense system)

SOMBRERO and Prometheus

ARIES-IFE Shielding Criteria (Cont.)

Criteria	Open Beamlines [#]	Shielded Beamlines ^{##}
Maintainability of building internals after shutdown	Remote	Hands-on for limited time before opening shield doors
Accessibility of final optics using remote handling equipment	Easy	Moderately easy after removing shield doors
Tritium contaminated area	$5 \text{ x } 10^4 \text{ m}^2$	8 x 10 ³ m ²
Volume of penetration shield*		1,600 m ³
Evacuated volume	10^{6} m^{3}	3x10 ³ m ³

* Compared to \sim 7,000 m³ bulk shield and \sim 70,000 m³ building

SOMBRERO-type

SOLASE (UW, 1977)

- Main features:
 - 12 **large** beams
 - (~1 m diameter @ FW)
 - Shielded beamlines
 - Mirrors at ~ 15 m
 - Boral* or SS liner for beamlines
 - Concrete shield/building to minimize cost
- Design Issues:
 - Nuclear heating, dpa, He and H levels at Al/H₂O metallic mirrors
 - Neutron leakage through SiO₂ windows to laser building
 - Biological dose around beamlines during and after operation

^{* 36%} B_4C and 64% Al, by volume

SOLASE (Cont.)

• Major findings:

- M-I has 100 times damage of M-II
- Boral liner reduces n leakage through windows by factor of 10
- Mirrors must be actively cooled during and after operation
- No personnel access to building during operation
- Mirrors should be remotely maintained after shutdown (no hands-on)
- Recommendations:
 - Larger number of beams with smaller radii to reduce leakage \Rightarrow higher L/D
 - Flux trap along beam duct
 - Used later in GIMM (LLNL-90), SOMBRERO (UW-92), SIRIUS-P (UW-93), Prometheus (MDA-92), and HIB designs
 - Sharper beam bend to reduce streaming \Rightarrow Smaller incidence angle^{*}
 - Used later in SENRI-I
 - Not feasible for GIMM
 - Rotating shutter to close penetrations between shots
 - Used later in GIMM (LLNL-90), Prometheus (MDA-92), and HIB designs
 - Place M-I away from target to reduce damage
 - concerns: higher f #, larger building, misalignment, out-focusing
 - Beam crossover optics to protect M-II for life and reduce leakage
 - Concern: gas breakdown due to high laser intensity at orifice
 - Used later in SENRI-I (J-82), SIRIUS-M (UW-88), SIRIUS-T (UW-91), and Prometheus (MDA-92)

* Between beam and normal to mirror

SOLASE (Cont.)

Point Cross-Over

SENRI-I (Japan, 1982)

- Main features:
 - 8 beamlines
 - -60° beam bend
 - Beam crossover (not shown)
 - Various n trap materials behind M-II
- Design issues:
 - Effectiveness of leakage reduction techniques:
 - Point crossover
 - orifice diameter
 - Absorber behind M-II
 - Sensitivity of leakage to M-II location and thickness

SENRI-I (Cont.)

- Major findings: \bullet
 - Leakage through windows varies as square of orifice diameter
 - Effectiveness of leakage reduction techniques:

	Reduction in leakage
Point crossover optics with 10 cm orifice	103-104
Double distance between mirrors	3
Borated water absorber behind M-II	6
Very thin M-II (100 µm Cu)	104 (!)

Recommendations:

- Combine point crossover, black body absorber, and thin mirror techniques to achieve 10⁷ reduction in leakage (!)

SIRIUS-M (UW, 1988)

- Main features:
 - 32 beamlines
 - 8 shielding configurations examined to protect mirrors and windows
 - 1 cm thick boral^{*} liner for shielded beamlines
- Design issues:
 - Optimum thickness of 3 shielding components: bulk shield, penetration shield, and building
 - Heating and dpa to Al/H₂O metallic mirrors
 - Heating in SiO₂ windows
 - Leakage to laser building
 - Accessibility of building during operation and after shutdown
 - Volume of penetration shield

^{* 36%} B_4C and 64% Al, by volume

SIRIUS-M (Cont.) Shielding Options I-IV

- Main features:
 - 3 m thick concrete bulk shield surrounds chamber (70 cm thick) to reduce biological dose to workers below limit during operation (in absence of penetrations)
 - 1 m thick concrete penetration shield surrounds mirrors
 - Options for penetration shield:
 - **Option I**: 1 m thick concrete shield around beamline
 - Options II, III, and IV: 1 m thick concrete building
 - Option III, IV: 1 cm thick Al duct around beamline
 - Option IV: borated water fills space between building and shield

SIRIUS-M (Cont.) Shielding Options I-IV

- Major findings:
 - All options result in ~ same damage to M-I and M-II
 - Source neutrons dominate damage to M-I
 - Factor of 70 lower damage at M-II compared to M-I
 - Building internals have minimal impact on n streaming through windows
 - In all options, highest biological dose during operation occurs outside M-I shield
 - Option I results in factor of 2-3 higher biological dose outside shield surrounding mirrors
 - No personnel access during operation around beamlines or inside building
 - Remote maintenance for mirrors after shutdown
- Recommendations:
 - Thicken penetration shield around mirrors from 1 to 3 m to protect workers during operation.
 - 40 cm thick concrete shield around beamlines allows hands-on maintenance inside building after shutdown, providing that shield remains intact

SIRIUS-M (Cont.) Shielding Options V-VIII

- Main features:
 - No shield surrounding chamber
 - 3 m thick concrete building to meet biological dose limit during operation (away from penetrations)
 - Local concrete shield surrounds M-II in Options VI, VII, and VIII
 - Shield around M-I in Option VII only
 - Beam crossover with 10 cm orifice diameter for Option VIII (differential pumping in beamlines to avoid gas breakdown)

SIRIUS-M (Cont.) Shielding Options V-VIII

- Major findings:
 - All options result in \sim same damage to M-I (dominated by source n's)
 - M-II of Option V, VI, VII, and VIII has factor of 20, 60, 70, and 6000 lower damage compared to M-I, respectively
 - Option V results in highest n leakage to laser building (factor of 15 > Options VI, VII)
 - Option VIII results in lowest n leakage to laser building (10²-10³ < Options V-VII)
 - Biological dose during operation:
 - Personnel access allowed **outside** building providing that beamlines to laser building are surrounded with 1-3 m thick shield
 - Biological dose after shutdown:
 - No personnel access allowed inside building
 - Remote maintenance for M-I and M-II
 - Hands-on maintenance allowed for M-II of Option VIII
- Recommendations:
 - Option VIII is the best from shielding viewpoint

SIRIUS-MandSIRIUS-T(UW-1988)(UW-1991)

- Main features:
 - Beam crossover to protect M-II for life and minimize leakage to laser building

Grazing Incidence Metal Mirror (GIMM) (Bieri and Guinan, LLNL 1990)

- Main features:
 - GIMM @ 30 m and dielectric mirror @ 50 m
 - Grazing incidence improves laser reflectivity and reduces absorptance
 - Large GIMM reduces laser fluence (J/cm²) by $\cos \theta^*$
 - Thin protective metals or oxides are more radiation-resistant than dielectric coatings
 - Sensitive dielectric mirrors moved away from direct-line-of-sight of target n's

^{*} Incidence angle between beam and normal to mirror

GIMM (Cont.)

- Major findings:
 - GIMM:
 - n-induced defects and surface roughening raise laser absorptance by < 1%
 - n-induced swelling and creep of GIMM and support structure will be life limiting for RT GIMM but not a concern for cryogenic mirror (because swelling and creep saturate at cryo-temperature)
 - Cryogenic cooling allows higher beam energy threshold and smaller GIMM. However, cryo-load could be prohibitive $(10-100 \text{ MW}_{e})$
 - Al swells less than Mg
 - Al alloys swell less than pure Al
 - Dielectric mirrors:
 - Limited data on n damage limit to dielectric coatings
 - Assuming n fluence limit of $10^{17}-10^{18}$ n/cm² (E_n > 1 MeV), mirror's lifetime ranges between 1 and 30 FPY, depending on estimated n flux
 - If mirror is placed in direct-line-of-sight @ 50 m, lifetime would be 1-10 days
 - \Rightarrow 300-1000 X shorter lifetime
 - No waste disposal problem for 1-2 FPY Al mirrors
 - Remote maintenance for Al mirrors

GIMM (Cont.)

- Concern:
 - Flaws/contaminants as small as 1 µm look locally like normal incidence.
 Local absorption increases from shot to shot, leading to failure
- Recommendations:
 - Dielectric mirrors:
 - Need experimental data for n damage limit
 - GIMM:
 - Need experimental verification of laser damage thresholds for metals and oxide coatings
 - Install "get lost holes" behind GIMM to trap n's
 - Protect GIMM between shots from ion debris and x-rays using:
 - High-speed mechanical shutters on beamlines
 - Few torr-m of Ar gas jets in beamlines
 - Low energy pre-pulse laser beams to vaporize surface contaminants condensing on GIMM
 - Develop manufacturing techniques for large high quality mirrors

Grazing Incidence Liquid Metal Mirror (GILMM) (Moir, LLNL 1999)

- Main features:
 - No nuclear analysis
 - Thin film (< 100 μm) of LM (Na, Li, Hg, Al, Ga, or Pb) flowing down 85° inclined surface
 - 1-100 J/cm² laser heating limit, depending on LM, pulse duration, λ , and surface area
 - Surface imperfections heals due to flowing liquid
 - Radiation-resistant to n's with service lifetime > 30 years (!)
 - Li can stand x-rays, but Na needs Xe gas jets to avoid high temperature rise
 - Delivers high quality laser to target

GILMM (Cont.)

- Requirements:
 - Flat and uniform surface over long distance
 - Wetted surface at all times
 - Slow flow of liquid surface to avoid shear flow instabilities and surface ripples
 - Limit heat flux to avoid sudden (isochoric) heating and rapid expansion
- Concerns:
 - Film stability for large inclination of mirror surface (at top/bottom of machine)
 - Dry out of surface requiring plant shutdown
 - Disturbances can be initiated by:
 - Uneven laser heating
 - Acoustic motion due to gas shock and target debris
 - n and γ heating

GILMM (Cont.)

- Major findings:
 - For $\Delta T \sim 200$ °C, liquid Al (T_m= 660 °C) allows highest laser heating followed by Na, Ga and Li (106, 57, 28, and 8 J/cm² normal to beam, respectively)
 - High T_m of Al suggests use of Na and Li
 - Limitation on film thickness is unknown. However,
 - Maintaining wetting could determine thickness
 - Na film must be $< 25 \,\mu\text{m}$ to avoid waves
- Recommendations:
 - Need experiments to:
 - Determine feasibility of concept
 - Prove stable thin flowing films can be made for steep slopes
 - Verify surface smoothness

SOMBRERO (UW et al., 1992)

- Main features:
 - 60 beamlines 17 cm diameter @ FW
 - 1.7 m concrete shield @ 10 m
 - 1.2 m concrete building @ 53 m
 - n flux trap mounted on building
 - Unshielded mirrors:
 - GIMM at 30 m
 - Dielectric coated mirror at 50 m
- Design issues:
 - Lifetime of M-I and M-II using range of radiation limits
 - Accessibility of building during operation and after shutdown

SOMBRERO (Cont.)

- Major findings:
 - 90% annealing prolongs M-I life by factor of 10
 - M-I lifetime ranges between 0.4 and 400 FPY, depending on fast n fluence limit (10²⁰-10²² n/cm²) and annealing recovery fraction (0-90%). For example, 10²¹ n/cm² and 80% recovery ⇒ 17 FPY lifetime
 - Neutron trap with aspect ratio (L/D) of ~2 limits back-scattering to M-II
 - For 10¹⁸ n/cm² fluence limit, M-II lifetime could reach 37 FPY (based on 1-D !)
 - Acceptable dose to workers providing that 2.2 m local shield installed behind n trap
 - No personnel access to building at any time
- Recommendations:
 - Check effectiveness of n trap with 3-D analysis
 - Develop R&D program to determine radiation limits to mirrors

SIRIUS-P (UW, 1993)

- Main features:
 - Chamber design resembles SOMBRERO's
 - 1.5 m concrete shield @ 10 m
 - 1.2 m concrete building @ 42 m
 - n trap mounted on building
 - Unshielded mirrors:
 - GIMM at 25 m
 - Dielectric coated mirror at 40 m
- Design issues:
 - Lifetimes of M-I and M-II using range of radiation limits
 - Sensitivity of mirror damage to aspect ratio (A) of n trap

SIRIUS-P (Cont.)

- Major findings:
 - M-I lifetime ranges between 0.3 and 300 FPY, depending on fast n fluence limit (10²⁰-10²² n/cm²) and annealing recovery fraction (0-90%).
 For example, 10²¹ n/cm² and 80% recovery ⇒ 14 FPY lifetime
 - Neutron flux at M-II decreases with aspect ratio of n trap. Factor of 10 reduction for $A \ge 3$
 - M-II lifetime is 0.6 FPY for fluence limit of 10¹⁸ n/cm². Few days lifetime if placed in direct line-of-sight with source n's (100 X shorter lifetime)
 - Presence of M-I increases M-II flux by factor of 2
- Recommendations:
 - Aspect ratio of 3 is optimum for n trap
 - Careful choice of M-I materials could reduce n scattering to M-II
 - R&D program is needed to determine radiation limits to mirrors

Modified SOMBRERO with DPSSL Driver (LLNL, 1999)

- Modifications to SOMBRERO design:
 - 20 times larger 60-beams
 - \Rightarrow 75 cm beam port diameter @ FW instead of 17 cm
 - SiO₂ wedges @ 30 m instead of GIMM
 - n trap with A = 1 (L = D = 5 m @ 50 m)
 - M-II @ 50 m with ZnS or MgF_2 dielectric coating on SiO₂ substrate
- Design issues:
 - Lifetimes of wedges and M-II using range of radiation limits
 - Fluence, heating, and recycling dose for wedges and M-II
 - WDR for wedges, M-II, n trap, and building
 - Cumulative volume of replaceable wedges and M-II

Modified SOMBRERO (Cont.)

• Major findings:

_	Fluence limit to wedges	10 ²⁰ n/cm ²	10 ²² n/cm ²
	Lifetime	0.33 FPY	33 FPY
	Cumulative volume over 30 FPY	1600 m ³	16 m ³
	Fluence limit to M-II	10 ¹⁸ n/cm ²	10 ¹⁹ n/cm ²
	Lifetime	0.25 FPY	2.5 FPY
	Cumulative volume over 30 FPY	2700 m ³	270 m ³

- 15,000 and 400 rads/s dose to wedge and M-II, respectively
- Wedges, M-II, n traps, and building are LLW, according to Fetter's limits
- Hands-on recycling allowed for wedges, M-II/MgF₂, M-II/ZnS, n traps, and building after 10, 0.03, 10, 100, and 30 y following shutdown
- Recommendations:
 - Self-annealing @ 400 °C may extend wedges lifetime and reduce cumulative waste
 - Reuse of M-II substrate reduces cumulative waste volume
 - Reduce beam size and thin wedges to prolong M-II lifetime
 - MgF_2 is preferable over ZnS for offering lower recycling dose and WDR
 - Data on fluence and heating limits are required

Prometheus (MDA et al., 1992)

- Main features:
 - 60 beams
 - Shielded beamlines:
 - GIMM at 21 m; He-cooled, Al coated SiC
 - Dielectric coated M-II at 30 m
 - 20-25 cm thick penetration shield surrounding beamlines to contain n's and tritium
 - n trap attached to penetration shield
 - Beam crossover to reduce leakage through windows with pumping on both sides of orifice to avoid gas breakdown
 - 1.65 m concrete shield @ 10 m
 - Concrete building @ 40 m
 - Building at atmospheric pressure
 - All enclosed beamlines will be pumped

Prometheus (Cont.)

- Design issues:
 - Lifetimes of M-I and M-II with multiple protection schemes
 - Personnel access to building during operation and after shutdown
- Major findings:
 - 2.3 km long, 20-25 cm thick penetration shield (1,600 m³)
 - Acceptable dose to workers outside building
 - No personnel access to building during operation
 - After shutdown:
 - Adequate dose for hands-on maintenance, but remote maintenance is recommended, specially after opening shield doors to maintain mirrors
 - Remote maintenance for mirrors
 - GIMM with tapered Al coating are expected to be lifetime components* if:
 - Liquid Pb flows in beam port walls. Pb vapor attenuates debris and x-rays
 - Small magnets placed around beamlines to deflect ions and charged particles
 - Pre-pulse beams vaporize condensed Pb vapor and debris on mirrors
 - High-speed shutters intercept particles before reaching optics

^{*} No nuclear analysis performed for M-II to support the lifetime statement Proposed schemes will not stop n's

Recommended Shielding Scheme for ARIES-IFE Optics

- Develop more efficient n trap design with A=3 (confirm with 3-D analysis)
- Surround M-II with local shield (confirm with 3-D analysis)
- Enclose beamlines in **thin** tube^{*} (~1 cm boral or SS) to:
 - Confine T in small volume
 - Maintain vacuum inside enclosures
 - Allow atmospheric pressure in building (could be oxygen-free and/or filled with He gas)
 - Plate out condensables on cold enclosures
- Thick penetration shield (~ 40 cm) surrounding beamlines is not needed unless hands-on maintenance is required inside building for **limited time** after shutdown prior to opening shield doors to maintain mirrors
- No need for beam crossover. It may not be effective in SOMBREROtype design
- Minimize size of beam ports

^{*} Applied to beamlines between bulk shield and building only, excluding region inside bulk shield to facilitate chamber maintenance

Recommended Shielding Scheme for ARIES-IFE Optics (Cont.)

- Use spinel coating on SiC/SiC (or C/C) substrate for GIMM to lower n-induced swelling and prolong life
- Operate optics at high temperatures to continuously anneal radiationinduced damage
- Develop more radiation-resistant dielectric coatings for M-II
- Use multiple defense system to stop x-rays and ion debris :
 - Gas or liquid* jets
 - High-speed mechanical shutters
 - Pre-pulse laser beams to evaporate surface contaminants between shots
 - Small coils around beamlines to deflect charged particles
- Concrete shields required to meet dose limit to workers outside building during operation:
 - 2 m thick bulk shield
 - 1 m thick building
 - 2.5 m thick local shield behind each n trap

^{*} Recently proposed by Per Peterson, UC-Berkeley