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In this Phase of ARIES, We will Consider Gas-
Protected Dry-Wall Target Chambers

•Advantages
—Adaptable to chambers with many holes (direct-drive laser fusion for example).

—No vapors to condense on laser optics.

—Passive (no moving parts or jets).

—Allows high temperature wall (high thermal efficiency).

•Disadvantages
—High energy inventory in gas (radiative heat transfer slows when gas is still hot.)

—Target heating during injection.

•Issues
—Target Output

—Atomic physics and radiation transport in gas.

—Response of Wall to Blast

—Laser breakdown of gas.

—Impurity build-up and gas transmutation.

—Target Injection

—Gas Radioactivity
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SOMBRERO is a Working Example of a Gas-
Protected Dry-Wall Target Chamber

•In SOMBRERO, 0.5 Torr of Xe
stops  1.6 MeV carbon ions (most of 
the non-neutronic target output) 
before they reach the chamber wall.

•The fireball radiation emission is 
slow enough that the graphite first 
wall stays below the sublimation 
limit.  BUCKY predicts a peak 
surface temperature 2,155 C.   

•The shock applied to the wall 
applies and impulse of 2.21 Pa-s and 
a peak pressure of 0.013 MPa.

•BUCKY simulations show that wall 
survival is sensitive to Xe opacity.
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Laser 
Propagation:
Breakdown

Variables Considered For Choosing the
Cavity Gas Environment in SOMBRERO

Gas Opacity:
Stop target x-
rays and wall 
radiant heat

Stopping of 
Target Ions

Gas Atom Species

Density of Gas Atoms

Variables Considered For Choosing the Cavity 
Gas Environment in SOMBRERO

Neutron 
Activation 
of Gas

Target 
Injection
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Laser Propagation in Target Chamber Gases 
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•Laser beams need to avoid laser 
breakdown of the fill gas and plasma 
instabilities that can lead to unsmooth
beams or poor laser-target coupling.

•SOMBRERO calls for 33 TW/cm2 0.25 µ 
laser light on the surface of the target.

•The breakdown threshold is one way of 
measuring how well the laser traverses the 
gas.

•The breakdown threshold depends on 
laser wavelength, pulse shape, coherence, 
uniformity, focal length and gas 
conditions.

•Old data show that it is possible that KrF 
diver beams may traverse 1 Torr of 
Xenon; more experiments must confirm 
this. 

Data compiled from work 
in the 1980’s
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Target Chamber Gas Heats Target Through Friction 
and Radiation: Threat to Direct-Drive Cryogenic Fuel 
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Temperature Change with Surface Heat Flux
at Some Key Points at Time of 15 ms•ANSYS calculations out 

to 15 ms.

•Perfect contact is 
assumed.

•Even at 1.0 W/cm2, outer 
DT increases by 3 K to 17 
K.

•Inner DT heats by less 
than 0.5 K, even at much 
higher heating.

•Protection strategies: Xe 
snowball, re-entry vehicle, 
target delivery tube, …
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Xenon Gas in SOMBRERO Spreads Out the heat 
Transfer to the Wall of the Target Chamber
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•100 MJ of  X-rays 
and Debris Ions are 
Released by the target 
over about 10 ns.

•Xenon Gas absorbs 
target x-rays and ions.

•Gas radiates energy 
to the wall over about 
100 µs.

•Very sensitive to Xe 
opacities.

Prompt Hard X-Rays

Soft X-Rays

1.99 GW/cm2
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Chamber Physics Critical Issues Involve Target 
Output, Gas Behavior and First Wall Response  

Design,
Fabrication,

Output Simulations,
(Output Experiments)

Design,
Fabrication,

Output Simulations,
(Output Experiments)

Gas Opacities,
Radiation Transport,

Rad-Hydro Simulations

Gas Opacities,
Radiation Transport,

Rad-Hydro Simulations

Wall Properties,
Neutron Damage,

Near-Vapor Behavior,
Thermal Stresses

Wall Properties,
Neutron Damage,

Near-Vapor Behavior,
Thermal Stresses

X-rays,
Ion Debris,
Neutrons

Thermal 
Radiation,

Shock

Target Output Gas Behavior Wall Response

UW uses the BUCKY 1-D Radiation-Hydrodynamics Code to Simulate 
Target, Gas Behavior and Wall Response.
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BUCKY is a Flexible 1-D Lagrangian Radiation-

Hydrodynamics Code

• 1-D Lagrangian MHD (spherical, cylindrical or slab).

• Thermal conduction with diffusion.

• Applied electrical current with magnetic field and pressure calculation.

• Radiation transport with multi-group flux-limited diffusion, method of short 
characteristics, and variable Eddington.

• Non-LTE CRE line transport.

• Opacities and equations of state from EOSOPA or SESAME.

• Equilibrium electrical conductivities

• Thermonuclear burn (DT,DD,DHe3) with in-flight reactions.

• Fusion product transport; time-dependent charged particle tracking, neutron energy 
deposition.

• Applied energy sources: time and energy dependent ions, electrons, and x-rays.

• Moderate energy density physics: melting, vaporization, and thermal conduction in 
solids and liquids.

• Benchmarking: x-ray burn-through and shock experiments on Nova and Omega, x-ray 
vaporization, RHEPP melting and vaporization, PBFA-II Kα emission, …

• Platforms: UNIX, PC, MAC
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Inertial Fusion Target OutputInertial Fusion Target Output
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Direct and In-Direct Drive Targets Under Consideration 
Have Different Output

DT Vapor

DT Fuel
Foam + DT

1 µ CH + 400 Å Au

0.265g/cc

0.25 g/cc
.135 mm

.150 mm

.169 mm

DT Vapor

DT Fuel
Foam + DT

1 µ CH

0.265g/cc

0.25 g/cc
.122 mm

.144 mm

.162 mm

NRL Direct-drive Laser
Targets May Contain High Z

Indirect-drive HIF and Z-pinch
Targets Have High-Z Hohlraums

DT gas

DT ice
Be98O2

BeO

He gas

Au

0

2 mm

6 mm
X-1 TargetLLNL/LBNL HIF Target
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Photon Energy (keV)
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Target X-ray Spectrum

Direct-Drive Target Output is Dominated by 
Neutrons and Energetic Ablator Ions

Debris Ions
94 keV D - 5.81 MJ

141 keV T - 8.72 MJ
138 keV H - 9.24 MJ
188 keV He - 4.49 MJ 
1600 keV C - 55.24 MJ
Total - 83.24 MJ per shot
=15.68 J/cm2 on SOMBRERO Wall

X-Rays
22.41 MJ per shot
=4.22 J/cm2 on SOMBRERO Wall

Neutrons
317 MJ per shot
=59.7 J/cm2 on SOMBRERO Wall

SOMBRERO Target

DT gas

DT ice
CH

Z Experiments in Progress (6/15-6/21)
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UW has been Studying Indirect-Drive Target 
Sensitivity to Fabrication Uncertainties for X-1

Be98O2 thickness (cm)
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Indirect-Drive Target Output is Dominated by 
Neutrons and X-rays
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Implosion without hohlraum; radiation drive
Used to design capsule and study sensitivity to 
variations in fabrication.
Run time, a few hours  (HP C-180).

Final implosion and burn with hohlraum; no drive
Used to simulate x-ray and ion debris output
Run time, a few days  (HP C-180).

BeO

DT

Be98O2

BeO

DT

Au

Drive Radiation
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IFE Capsule Thermonuclear Burn Drives Target 
Radiative Disassembly and Neutronics
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Fuel burns in a few 10’s of ps,
Power density is truly astronomical
(1022 W/gm)

Burns propagates from central hot 
spot to rest of compressed fuel.
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Fuel Density-Radius Product (ρR) is High Enough to 
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X-1 Energy Partition Fluence on 
650 cm Wall

Neutrons: 220 MJ (69.22%) 41.4 J/cm2

Gammas: 0.95 MJ (.03%) 0.18 J/cm2

X-rays: 61.3 MJ (19.3%) 11.5 J/cm2

Ions: 28.6 MJ (9.0%) 5.4 J/cm2

Endoergic: 7.8 MJ (2.45%) -----------
Total: 318 MJ 58.5 J/cm2 156.450
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X-ray Emission from Indirect Drive (X-1) Targets is 
Largely Due to Collisions Between Expanding Shells 
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Output X-ray Spectrum: Sum of 3 Blackbody spectra
157 ns: 14 eV, 177 keV 160 ns: 709 eV, 4 keV, 177 keV
158 ns: 709 eV, 6 keV, 177 keV 161 ns: 354 eV, 6 keV, 177 keV
159 ns: 354 eV, 6 keV, 100 keV 161.5 ns 325 eV 6 keV, 177 keV

Output X-rays are released in two 
pulses over about 5 ns.
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Blast PropagationBlast Propagation
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The opacity of the chamber gas is an important 
input into reactor designs such as SOMBRERO
•In SOMBRERO, 0.5 Torr of Xe
stops  1.6 MeV carbon ions (most of 
the non-neutronic target output) 
before they reach the chamber wall.

•The fireball radiation emission is 
slow enough that the graphite first 
wall stays below the sublimation 
limit.  BUCKY predicts a peak 
surface temperature 2,155 C.   

•The shock applied to the wall 
applies and impulse of 2.21 Pa-s and 
a peak pressure of 0.013 MPa.

•BUCKY simulations show that wall 
survival is sensitive to Xe opacity.

•BUCKY simulations show that wall 
survival is sensitive to Xe opacity.
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In experiments at NRL, the propagation of blast waves 
was shown to depend on the opacity. 

•1988 NRL Laser 
Generated Fireball 
Experiments Show 
Propagation in Laser 
Path Ahead of Main 
Fireball.
•Dark-field 
Shadowgrams at 71 
and 146 ns.
•Reduced Opacity in 
Laser Path due to 
Laser Heating.

J.A. Stamper, et al., Phys. Fluids 31, 3353 (1988).
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Laser 
Propagation:
Breakdown

Variables Considered For Choosing the
Cavity Gas Environment in SOMBRERO

Gas Opacity:
Stop target x-rays 
and wall radiant 

heat

Gas Opacity:
Stop target x-rays 
and wall radiant 

heat

Stopping of 
Target Ions

Gas Atom Species

Density of Gas Atoms

Variables Considered For Choosing the Cavity 
Gas Environment in SOMBRERO

Neutron 
Activation 
of Gas

Target 
Injection



6/20/2000

22

Fusion Technology Institute
University of Wisconsin - Madison

ARIES IFE

Debris Ions
94 keV D - 5.81 MJ

141 keV T - 8.72 MJ
138 keV H - 9.24 MJ
188 keV He - 4.49 MJ 
1600 keV C - 55.24 MJ
Total - 83.24 MJ

X-Rays
22.41 MJ deposited in 1ns

X-Rays
22.41 MJ deposited in 1ns

Neutrons
317 MJ
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Though Direct-Drive Target Output is Dominated by 
Neutrons and Energetic Ablator Ions, the Target x-ray 

Emission must be Buffered.
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Xenon Gas in SOMBRERO Spreads Out the heat 
Transfer to the Wall of the Target Chamber
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•100 MJ of  X-rays 
and Debris Ions are 
Released by the target 
over about 10 ns.

•Xenon Gas absorbs 
target x-rays and ions.

•Gas radiates energy 
to the wall over about 
100 µs.

•Very sensitive to Xe 
opacities.

Prompt Hard X-Rays

Soft X-Rays

1.99 GW/cm2
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Wall Thermal and Mechanical Loading is Sensitive to 
Gas Opacity

Opacity Multiplier
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Atomic Physics and Opacity Effects Dictate Fireball 
Behavior: Experiment and/or Benchmarking are Needed

ISSUE: Gas opacity dominates 
fireball dynamics.  Fireball dynamics 
determines survival of first wall.  

PROBLEM: For SOMBRERO
Xenon (Z=54) has a very complicated 
atomic structure, leading to a great 
many lines that cannot be modeled 
with any reasonable group structure 
in a radiation hydrodynamics 
calculation.  
Experimental Validation: The opacity 
needs to be measured at about 1 Torr 
and 100 eV.

Energy
Source

VisibleVisible
LightLight

Gas

Tamper

Detector
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Radiation Transport in Gas Protected Target Chambers

Status: Radiation-hydro codes (BUCKY, 
RAGE, Lasnex) can model radiation-
dominated-blasts.   

Issue: Radiation Transport in SOMBRERO
fireballs is far out of equilibrium and flux-
limited radiation diffusion must be 
validated.  Tr≠Te table lookup methods exist, 
or an Average Atom model could be 
implemented.

Z

gas

hohlraum

z-pinch

Needs: High energy density (enough 
to heat Xe to ~ 100 eV) experiments on 
Z are being designed which would 
simulate radiation dominated blasts.  
Need a sample large enough to be 
optically thick.
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In SOMBRERO Radiation Flow is Governed by 
Emission, NOT Transport
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•Highest opacity at the 
edge of the fireball is the 
barrier to radiation 
transport.

• In this barrier, σRossρ ≈
10-3 1/cm, or the radiation 
mean-free-path is 1000 
cm.

•Therefore, radiation flow 
to the wall is limited by 
emission.
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Details of Gas Atomic Physics Is Important to Opacity

•Opacity is strongly 
affected by charge state of 
gas.

•Charge state profile is 
highly structured; high 
near target and low near 
wall.

•Calculation based on 
equilibrium model; is it 
right?



6/20/2000

29

Fusion Technology Institute
University of Wisconsin - Madison

ARIES IFE

In light of the importance of chamber gas opacity to the first wall, we 
plan to revisit the calculation of the Xe opacity using a more 

sophisticated code, EOSOPC

•EOSOPC represents an improvement over IONMIX:
•Atomic Physics:  multi-electron wavefunctions (UTA)
•Degeneracy lowering:  Hummer-Mihalas formalism is implemented
•Additional effects in EOS: (partial degeneracy, modified Debye-Hückel interaction)
•Results from EOSOPC have been benchmarked against burnthrough experiments, and 
compared with other major opacity codes, such as STA.

X-Ray Burnthrough of Au

Nova Experiments vs. BUCKY simulations 
assuming 150 TW/cm^2 Laser
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•The average 
charge state is a 
good figure of 
merit to compare 
between EOS 
codes, and is an 
important factor 
in the opacity.

•NEEDED:  
Benchmarking 
(NRL?) of 
EOSOPC results.

Preliminary LTE EOSOPC calculations for the Xe opacity have 
been performed, but need further study and benchmarking.

Preliminary LTE EOSOPC Xe Charge State 
as a function of temperature for two ion 

densities
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The dependence of the opacity on ionization balance is illustrated 
for plasma conditions relevant to dry wall IFE reactors.

Preliminary LTE EOSOPC Xe Rosseland Group Opacity
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Chamber Gas Opacity is a Critical Issue

•Chamber gas opacity is a crucial input which helps to 
determine first wall response. 

•A more sophisticated suite of EOS / Opacity code is 
being used to re-investigate the effects of Xe opacity 
on chamber dynamics.

•Though EOSOPC has been benchmarked against 
burnthrough data for Al and Au, Validation and 
Benchmarking of Code is still needed, especially for 
these non-equilibrium, highly non-isotropic 
conditions!!
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Wall Response in GasWall Response in Gas--Protected IFE Protected IFE 
ChambersChambers

ARIES MeetingARIES Meeting
June 19June 19--21, 200021, 2000

Madison, WIMadison, WI

Robert R. Peterson
University of Wisconsin-Madison
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Chamber Gas is Effective in Preventing Thermal 
Damage to Walls.  

•BUCKY simulations of wall response with and 
without gas protection.
•Importance of thermal properties of graphite.
•Minor design modifications can correct for surprises 
in thermal properties and/or opacities.
•Need for experiments on “low” fluence 
vaporization.
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Vaporization of a 650 cm Radius Graphite Wall is Un-
Avoidable without Gas-Protection

Position (cm)
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SOMBRERO - No gas

BUCKY Simulation:  SOMBRERO target output, no gas, 650 cm radius graphite wall

•X-rays reach surface first (t=0 
is arrival time of first x-rays).

•4.22 J/cm2 of x-rays vaporize 
part of wall, forming a self-
shielding layer.

•Ions stop in vapor, heating it.

•No additional vaporization 
seen from re-radiation.

•Need to look at low 
temperature C opacity in more 
detail. 
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Without Gas-Protection, Wall Surface Gets Very Hot
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BUCKY Simulation:  SOMBRERO target output, no gas, 650 cm radius graphite wall

Mass Ablation Rate:

















−

∆
=






=

T

T

kT

H
P

RT
AP

dt

dm

vap

vap

vap
sat

wallsat

1exp

3

2 2
1

µ

dm/dt will be high at 7000 K, and 
there will be substantial 
evaporation.
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Without Gas-Protection, There is Significant 
Vaporization of SOMBRERO Wall
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BUCKY Simulation:  SOMBRERO target output, no gas, 650 cm radius graphite wall

Vaporize 0.25 gm/cm2 of 
Wall = 1.3 metric tons per 
shot

Vaporize 1.1 µm of Wall per 
shot = 63 cm per day 
(5.8x105 shots per day) 
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Source: Dinw iddie et. a l., 1991, Burchell-1996, 

3D C-C Compos ite
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•SOMBRERO design 
assumes a 70 W/m-K 
bulk thermal 
conductivity and a 
surface value of 115. 
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•At SOMBRERO 
wall surface 
temperatures, 
radiation damage 
has only a small 
effect on thermal 
conductivity of 
graphite.
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Sombre ro-91(6.5m radius )

Sombre ro-91(7.0m radius )

The Peak First Wall Temperatures in SOMBRERO Depend 
on the Thermal Conductivity of the First Few Microns

Thermal Conductivity (W/m-K)
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•BUCKY simulations of first wall 
temperatures show a peak 
temperature of 2260 C for a 6.5 m 
radius chamber and a conductivity 
of 115 W/m-K.
•Peak temperature can be controlled 
with minor changes to the wall 
radius.
•IONMIX Xe opacities, need to use 
EOSOPA opacities.

BUCKY Simulation:  SOMBRERO target output, 1.8x1016 cm-3 Xe, 650 cm radius graphite wall
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Once the Evaporation is Below a Few Å Per Shot There 
is Essentially No Erosion of the C-C First Wall

•Experiments with many 
shots would be required 
to confirm low 
evaporation behavior.

•Molecular dynamics 
simulations of solid 
would be quite useful.

•IONMIX Xe opacities, 
need to use EOSOPA 
opacities.
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BUCKY Simulation:  SOMBRERO target output, 1.8x1016 cm-3 Xe, 650 cm radius graphite wall
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Ion Beam Melting and Onset Vaporization Experiments 
Have Been Done on RHEPP at SNL

Ion Fluence (J/cm2)
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•RHEPP Ions on Silicon.

•Laser Reflectivity Measures Melt-
Duration
•BUCKY Simulations.
•IFE Direct Drive Target Relevant 
Ions: 
½657 keV Protons
½1318 keV N2+

½ 665 keV N+

•Vaporization Begins around 2 J/cm2.
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Chamber Physics Critical Issues Involve Target 
Output, Gas Behavior and First Wall Response  

Design,
Fabrication,

Output Simulations,
(Output Experiments)

Design,
Fabrication,

Output Simulations,
(Output Experiments)

Gas Opacities,
Radiation Transport,

Rad-Hydro Simulations,

Gas Opacities,
Radiation Transport,

Rad-Hydro Simulations,

Wall Properties,
Neutron Damage,

Near-Vapor Behavior,
Thermal Stresses

Wall Properties,
Neutron Damage,

Near-Vapor Behavior,
Thermal Stresses

X-rays,
Ion Debris,
Neutrons

Thermal 
Radiation,

Shock

Target Output Gas Behavior Wall Response

Target Design: NRL
Fabrication: GA

Output Simulations:
UW, NRL, LLNL
(Z-experiments

UW-SNL)

Target Design: NRL
Fabrication: GA

Output Simulations:
UW, NRL, LLNL
(Z-experiments

UW-SNL)

Xe, Kr Opacities:
UW,NRL

Transport Models:
UW

Blast Simulations:
UW 

Xe, Kr Opacities:
UW,NRL

Transport Models:
UW

Blast Simulations:
UW 

Thermal Properties:
UCSD, UW, ANL

First Wall Simulations:
UW,UCSD

Thermal Stresses:
UCSD,UW

Thermal Properties:
UCSD, UW, ANL

First Wall Simulations:
UW,UCSD

Thermal Stresses:
UCSD,UW




