Minimum Radial Standoff: Problem Definition and Needed Info

L. El-Guebaly

Fusion Technology Institute University of Wisconsin - Madison

With Input from:

S. Malang, R. Raffray (UCSD), J. Lyon (ORNL), and P. Heitzenroeder (PPPL)

> ARIES Project Meeting January 8-10, 2003 UCSD

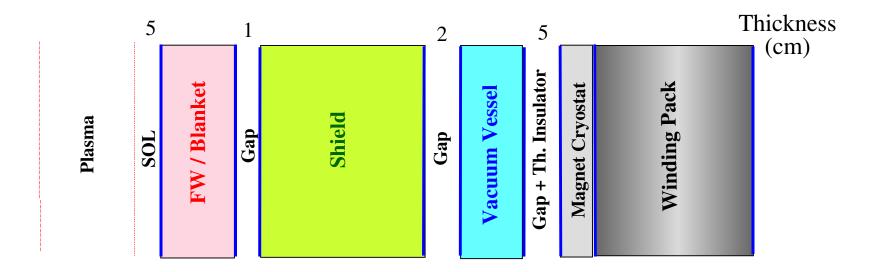
Outline

- Key elements and design options for compact radial build.
- Breeding assessment of example blanket design.
- Needed info for shielding analysis.
- Comparison between radial builds of SPPS, HSR, QA#2, and ARIES-CS!?.

Initial Parameters (Case QA#2*, per Lyon)

Net Electric Power	1000 MW _e
# of Field Periods	3
A	4.4
< R >	9.93 m
< a >	2.26 m
Average Neutron Wall Loading	1.37 MW/m ²
FW Area	~ 900 m ²
Minimum Plasma to Coil-Center Distance (Δ) (Scaled from ARIES-AT)	1.6 m

^{*} J. Lyon's presentation, ARIES project meeting at PPPL, Oct 2-4, 2002.



Neutron Wall Loading Profile

- Toroidal/poloidal distribution will be determined with 3-D neutronics code MCNP.
- Needed info:
 - Fusion power
 - Radial variation of neutron source
 - Magnetic shift.
- For now, **peak** NWL of 2 MW/m² will be used in preliminary shielding analysis.
- NWL may not peak at location of minimum plasma-coil distance.

Key Elements Comprising Radial Build

- FW and Blanket recover 90% of n energy and breed T.
- All components are permanent, except FW/blanket and divertor.
- All components provide shielding function:
 - Blanket protects shield
 - Blanket and shield protect VV
 - All components protect magnets
 - All components and building protect workers and public.

Design Requirements and Radiation Limits Influence Size and Constituents of Components

0	VOR	പ	TD	D
U	ver	al	lB	K

(for T self-sufficiency)

dpa @ FS-based shield

(for structural integrity)

Helium production @ VV

(for reweldability)

Magnet damage:

n **fluence** to Nb₃Sn or YBCO (n/cm², $E_n > 0.1$ MeV) **Dose** to poly. insulator (rads)

Nuclear **heating** (mW/cm³) **dpa** to Cu stabilizer (dpa)

Biological dose outside building

(for workers and public protection)

Requirements / Limits

1.1

200 dpa

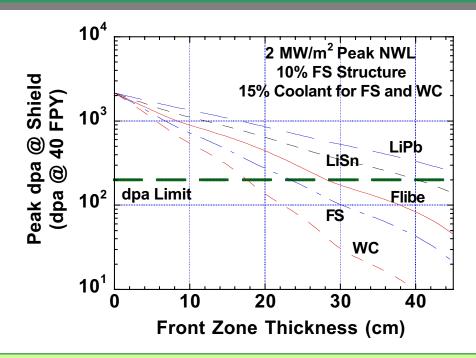
1 appm

$$\frac{LT}{(@4 k)}$$

 $\frac{\text{HT}}{(@ > 60 \text{ k})}$

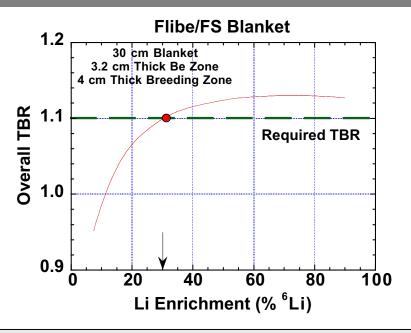
$$\begin{array}{c}
 10^{11} \\
 2 \\
 6x10^{-3}
 \end{array}$$

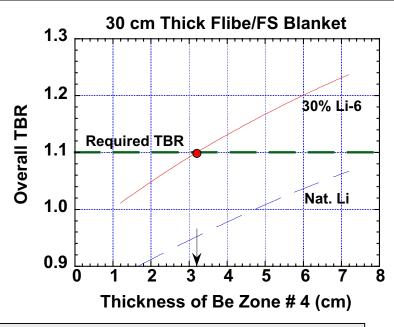
 10^{11}


2.5 mrem/h

Potential Breeders for Stellarator

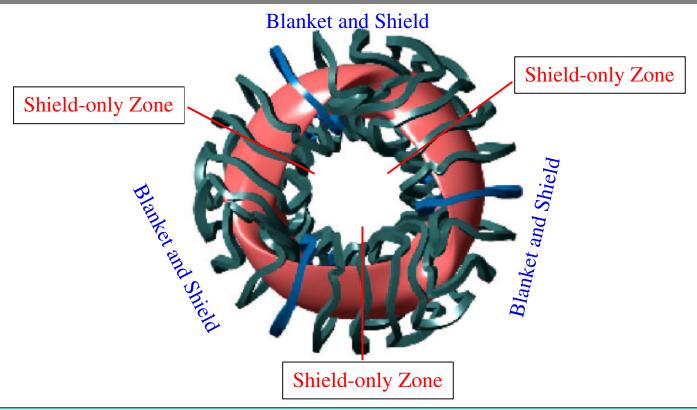
- Liquid breeders simplify stellarator blanket design.
- Flibe, Flinabe, LiSn, and all solid breeders require beryllium (or Pb) multiplier to meet breeding requirement.
- To control breeding level, adjust:
 - Blanket thickness
 - ⁶Li enrichment (10 90%)
 - Amount of Be/Pb multiplier.
- Be may raise economic, safety, and resource concerns.


Blanket with High Shielding Performance Help Reduce Radial Build



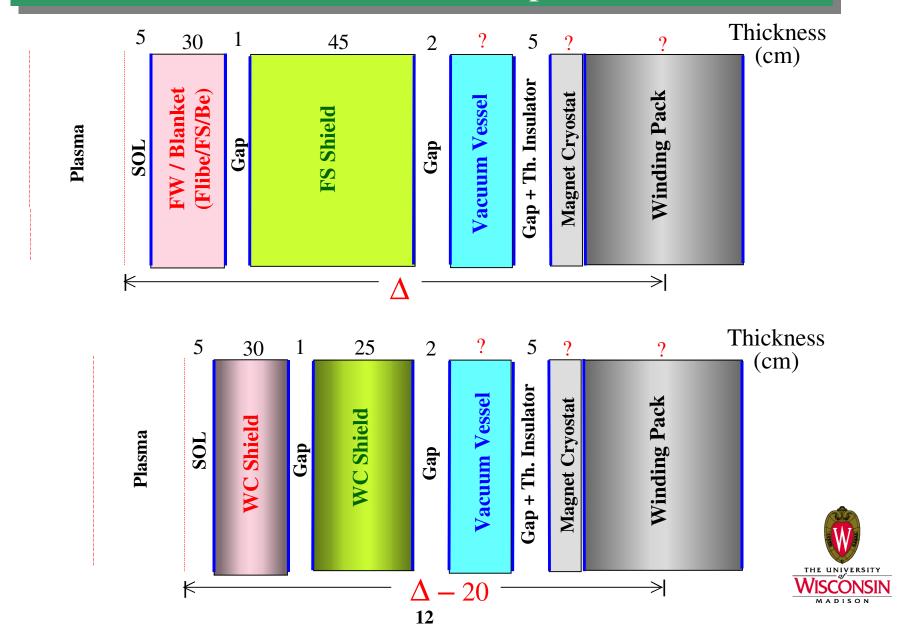
- Damage to shield is indicative of blanket shielding performance.
- Among liquid breeders, Flibe results in thinnest blanket (30 cm).
- For more compact design, replace blanket with WC-based shield in critical areas (at middle of each field period).

Breeding Assessment of Flibe Blanket Option


- Details of example blanket design are covered in Malang's presentation.
- 30 cm thick blanket provides TBR of 1.1, assuming:
 - Penetrations occupy 2% of FW area
 - Divertor plates/baffles cover 15% of FW area and cooled with He
 - Shield-only zones occupy 2% of FW area (~ 2.5 m x 2.5 m each).
- Flibe blanket has ~15% excess breeding capacity (with more Be and higher enrichment).

Shielding and VV Components

- Low-cost steel-based shield could be 45 cm thick to ensure reweldability of VV at any time during operation (40 FPY).
- Steel-based shield consists of: 15% FS structure 10% coolant (Flibe) 75% Borated-steel filler.
- Replacing Borated-steel filler with **WC filler** reduces shield thickness by ~5 cm.
- VV will be cooled with water (good shielding material).
- Need info on magnet to develop VV design:
 - HT or LT magnet?
 - Any changes to radiation limits?
 - Winding pack composition and dimension
 - Cryostat thickness and composition (coil case, insulator, etc.)


Shield-only Zones Offer up to 20 cm Reduction in Radial Build

- In shield-only zones:
 - Replace blanket with WC-shield
 (10% FS, 15% coolant (Flibe), 75% WC filler)
 - Replace 45 cm thick FS-shield with 25 cm thick WC-shield (15% FS, 10% coolant (Flibe), 75% WC filler).
- Shield-only zones may introduce engineering problems that need innovative design solutions.

Radial Build (Flibe/FS Blanket Option)

Comparison Between Radial Builds

	<u>SPPS</u>	<u>HSR</u> #,*,@	QA#2 *	ARIES Blanket and Shield	S-CS Shield only
Thickness (cm):					
SOL	15	30	5	5	5
FW/Blanket	36 (Li/V)	43 (LiPb/H ₂ O/FS)	30 (LiPb/SiC)	30 (Flibe/Fs/Be)	30 (Shield)
Gap	2	5	1	1	1
HT Shield	45	30 ?	49	45	25
Gap	2	_	2	2	2
VV or LT Shield	35	20 ?	20	?	?
Gap + Thermal Insulator	≥8	≥ 10	≥2	≥2	≥2
Cryostat + 1/2 Coil	<u>15+38</u>	<u>15+30</u>	<u>51</u>	?	<u>?</u>
Δ	196	183 ?	160	85 +?	65 +?

[#] CD Beidler et.al., "Recent Developments in Helias Reactor Studies", March 2002, http://www.ipp.mpg.de/eng/for/bereiche/e3/for_ber_e3_proj_sss.html

^{*} J. Lyon's presentation, ARIES project meeting at PPPL, Oct 2-4, 2002.

[@] HSR numbers need to be confirmed. LiPb blanket/shield may not protect VV for life.

Conclusions

- 30-cm-thick Flibe/FS blanket with Be multiplier offers good breeding margin and protects shield for life (40 FPY).
- 45-cm-thick FS shield assures reweldability of VV during operation.
- Up to 20 cm reduction in Δ is achievable with shield-only zones.
- To assess impact on R, B, and β , generate two cases with Δ and Δ -20 cm, using $M_n = 1.2$, $\eta_{th} = 45\%$, FW lifetime = 10 FPY, and availability = 80%.
- Needed info to estimate Δ :
 - Magnet and cryostat (HT or LT, thickness, composition, radiation limits, etc.)
 - Divertor plates/baffles composition and coverage fraction
 - Penetrations coverage fraction
 - Plasma parameters (P_f, magnetic shift,etc.)
 - ϑ Φ map for plasma-coil distance
 - Plasma shapes at various toroidal locations.

