Radial Build Updates for Flibe/FS System

Laila El-Guebaly

Fusion Technology Institute University of Wisconsin - Madison

With Input from: L. Ku (PPPL), R. Raffray (UCSD), and L. Bromberg (MIT)

> ARIES-CS E-Meeting February 25, 2003

http://fti.neep.wisc.edu/FTI/ARIES/FEB2003/lae.pdf

Design Changes and Implications

	<u>Old</u>	New	Design Implications
Av. Γ (MW/m ²)	1.4	2	
Peak Γ(MW/m ²)	~2	~3	– Need thicker blanket (> 30 cm) to protect shield.
Δ_{\min}	Expected at Middle of Field Period (2% of FW a	Twice per Field Period area)	 Higher coverage for shield-only zones Lower breeding More expensive WC shield.
Magnet	HT or LT?	LT @ 4k Nb ₃ Sn or NbTi?	 Assume Nb₃Sn with 10¹⁹ n/cm² fluence limit and 2 mW/cm³ heating limit.
Cryostat	?	2 cm inner coil case	 Assume 0.2 cm GFF polyimide electric insulator.
Winding Pack (WP)	?	– 25 cm, or – 50 cm	 - 100% coverage (impractical). - 50% coverage: - Toroidal spacing between coils ?
		2	– Acceptable for FW/B/D maintenance ?!

Along with 33 cm Blanket and 45 cm FS Shield, 25 cm VV Protects Magnet

Components

33 cm Blanket

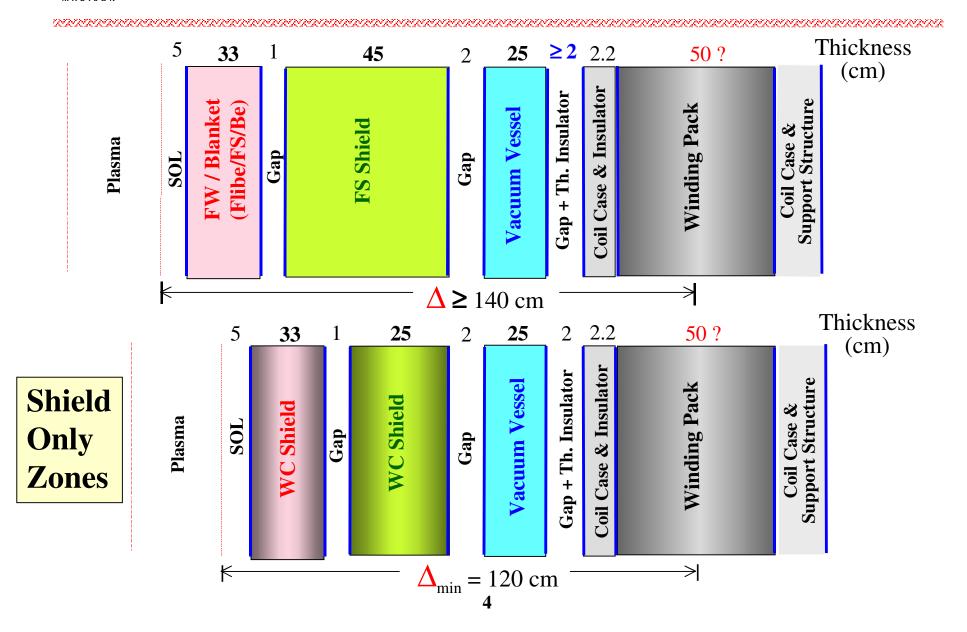
45 cm FS Shield

25 cm VV

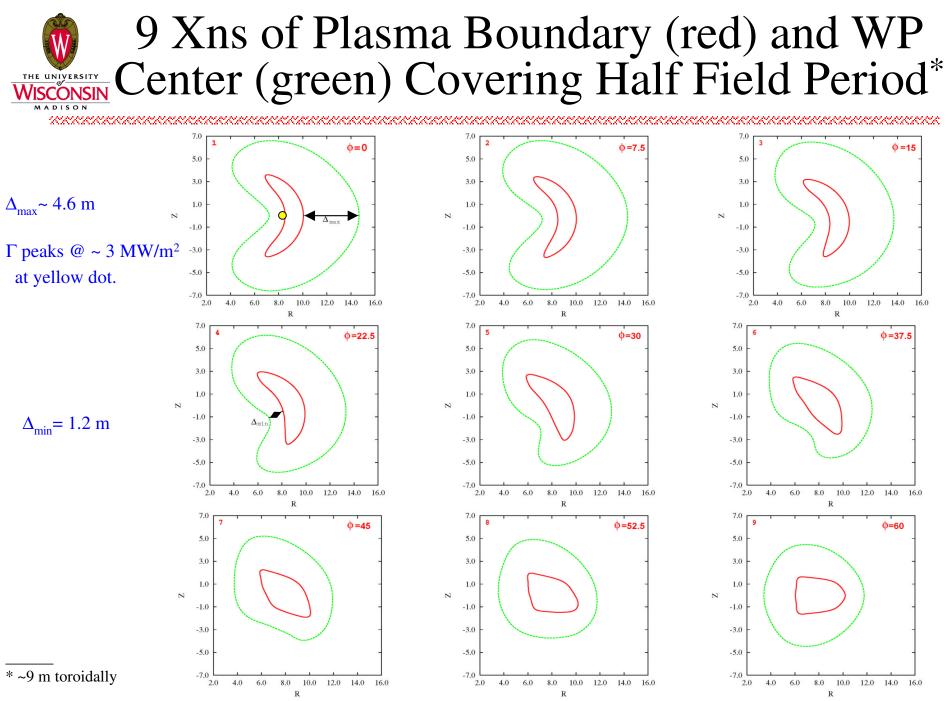
50 cm Winding Pack

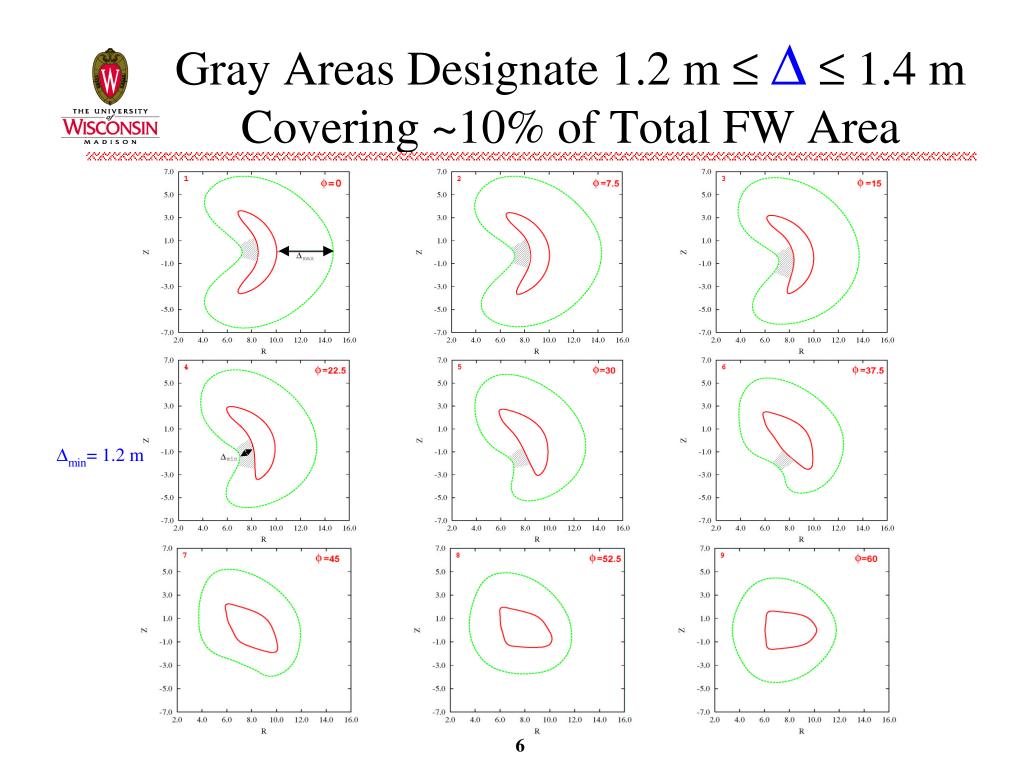
(Assuming same composition as for SPPS magnet)

Composition

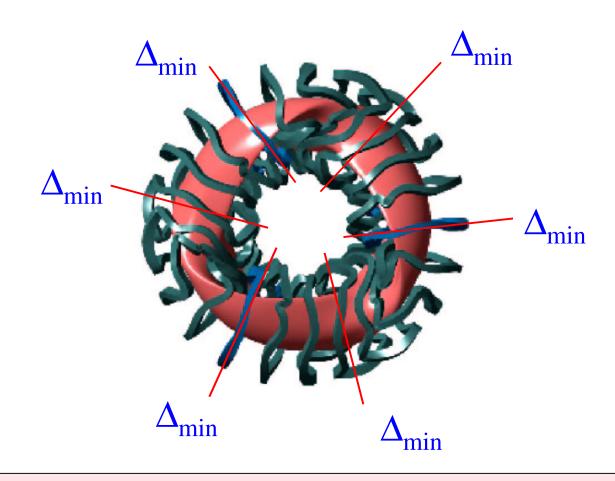

84% Flibe with enritched Li10% FS Structure6% Be

15% FS Structure10% Flibe75% Borated Steel Filler


28% FS Structure 72% Borated Water


25% Incoloy Structure 20% Cu Stabilizer 15% Nb₃Sn + Conduit 25% GFF Polyimide 15% LHe

Recommended Radial Build. Is 50 cm Winding Pack Acceptable?



THE UNIVERSITY

Is there a configuration with single Δ_{\min} per field period?

Comparison Between Radial Builds

	SPPS	<u>HSR</u> #,*,@	QA#2 *	ARIES-CS Blanket Shield	
Thickness (cm):				and Shield	only
SOL	15	30	5	5	5
FW/Blanket	36 (Li/V)	43 (LiPb/H ₂ O/FS)	30 (LiPb/SiC)	33 (Flibe/Fs)	33 (WC Shield)
Gap	2	5	1	1	1
HT Shield	45	30 ?	49	45	25
Gap	2	_	2	2	2
VV or LT Shield	35	20 ?	20	25	25
Gap +Th. Insulat	or ≥ 8	≥ 10	≥2	≥2	≥2
Cryostat +1/2 WI	P <u>15+38</u>	<u>15+30</u>	<u>51</u>	2+25	2+25
Δ	196	183 ?	160	140	120

CD Beidler et.al., "Recent Developments in Helias Reactor Studies", March 2002, http://www.ipp.mpg.de/eng/for/bereiche/e3/for_ber_e3_proj_sss.html

* J. Lyon's presentation, ARIES project meeting at PPPL, Oct 2-4, 2002.
@ HSR numbers need to be confirmed. LiPb blanket/shield may not protect VV for life.

Remarks and Recommendations

- Δ_{min}=120 cm and Δ ≥ 140 cm are adequate for Flibe/FS system providing that 50 cm-thick winding pack with 50% magnet coverage is acceptable.
- WC shield zones cover large fraction of FW area (~10%) and may cause breeding and economic problems:
 - For Flibe/FS system, more Be (> 6 %) and higher enrichment (> 30 %) could solve breeding problem
 - Breeding of LiPb system could be marginal
 - Be and WC are expensive

• Find alternate configuration with single Δ_{\min} per field period to alleviate engineering problems.