EFFECTS OF CHAMBER GEOMETRY AND GAS PROPERTIES ON HYDRODYNAMIC EVOLUTION OF IFE CHAMBERS

Zoran Dragojlovic and Farrokh Najmabadi
University of California in San Diego
Motivation

• The focus of our research effort is to model and study the chamber dynamic behavior on the long time scale, including:
 – the hydrodynamics;
 – the transfer mechanisms such as
 • photon and ion heat deposition
 • chamber gas conduction, convection and radiation;
 • chamber wall response and lifetime;
 • cavity clearing.
• In order to investigate these phenomena, a fully integrated numerical code SPARTAN is being developed as assembly of well documented algorithms.
• This talk is concerned with
 – multidimensional geometry effects which arise as fluid interacts with the vessel wall containing various beam access ports.
 – Effect of molecular diffusion and background plasma on chamber state evolution.
IFE Chamber Models

• SPARTAN numerical algorithms:
 – Godunov solver of Navier-Stokes equations with state dependent transport properties.
 – Embedded boundary
 – Adaptive Mesh Refinement

• Two different aspects of the cylindrical chamber given here:
 – Cartesian geometry (everything along chamber axis is constant)
 • Arrays of beam lines along chamber axis replaced by 4 beam sheets.
 – Cylindrical Geometry: (everything along polar angle θ is constant).
 • Arrays of beam lines around chamber perimeter replaced by a single beam sheet.
 • A beam line placed on top and bottom.

Cartesian

Cylindrical

chamber dimensions:
 radius: 6.5 m
 height: 13 m

beam sheet dimensions:
 length: 20 m
 width: 1 m
Effects of Chamber Geometry on Evolution of Chamber State

- Details are given for neutral gas.
- Impact of background plasma will be addressed separately.
Effects of Chamber Geometry

Time = 0.5 ms

Cartesian
\[T_{\text{max}} = 5.3 \times 10^4 \text{ K} \]

Cylindrical
\[T_{\text{max}} = 5.3 \times 10^4 \text{ K} \]

Time = 3 ms

Cartesian
\[T_{\text{max}} = 2.2 \times 10^5 \text{ K} \]

Cylindrical
\[T_{\text{max}} = 3.1 \times 10^5 \text{ K} \]

Time = 8 ms

Cartesian
\[T_{\text{max}} = 1.3 \times 10^5 \text{ K} \]

Cylindrical
\[T_{\text{max}} = 2.2 \times 10^5 \text{ K} \]

For all cases: \(T_{\text{min}} = T_{\text{wall}} = 973.16 \text{ K} \)
Effects of Chamber Geometry

Time = 20 ms

Cartesian

$T_{\text{max}} = 1.2 \times 10^5 \text{ K}$

Cylindrical

$T_{\text{max}} = 1.3 \times 10^5 \text{ K}$

Time = 65 ms

Cartesian

$T_{\text{max}} = 2.8 \times 10^4 \text{ K}$

Cylindrical

$T_{\text{max}} = 5.1 \times 10^4 \text{ K}$

Time = 100 ms

Cartesian

$T_{\text{max}} = 2.3 \times 10^4 \text{ K}$

Cylindrical

$T_{\text{max}} = 3.2 \times 10^4 \text{ K}$

For all cases: $T_{\text{min}} = T_{\text{wall}} = 973.16 \text{ K}$
Evolution of Gas Energy from 0-100 ms

- Impact of transport phenomena on chamber system, such as:
 - Molecular conduction of neutral gas.
 - Conduction due to free electrons of background plasma.
 - Volumetric heat loss due to radiation of background plasma.
Gas Energy from 0-100ms

- Case I: Neutral Gas
Gas Energy from 0-100 ms

- **Case I: Neutral Gas**
- **Case II: Neutral Gas + Electron Conductivity**
Gas Energy from 0-100 ms

- **Internal Energy**
- **Kinetic Energy**
- **Heat Conducted to Wall**

Cases:
- **Case I:** Neutral Gas
- **Case II:** Neutral Gas + Electron Conductivity
- **Case III:** Neutral Gas + Electron Conductivity + Radiation
Chamber State at 100 ms

- Impact of electron conductivity.
- Impact of radiation.
Chamber State at 100 ms

Case I: Neutral Gas

Case II: Neutral Gas + Electron Conductivity

Case III: Neutral Gas + Electron Conductivity + Radiation

For all cases: $T_{\text{min}} = T_{\text{wall}} = 973.16 \, \text{K}$
Conclusions

• SPARTAN simulations of the hydrodynamic evolution of the IFE chamber indicate:
 – Multi-dimensional effects of chamber geometry are critical in assessing the chamber dynamics.
 – Radiation of background plasma is the most important mechanism of heat transfer.
• Is 2-D modeling good enough?
 – Maybe.
 • Present simulations with Cartesian and cylindrical geometry show similar trends in flow and heat transfer.
 • To fully answer this question, more different aspects of geometry to be probed by 2-D simulations, such as spherical chamber wall, different configuration of beam lines, etc.
 • Doing at least a few 3-D simulations might be a good idea.