PROGRESS IN TECHNOLOGY
AT JET

A S Kaye

UKAEA, Culham Division
EURATOM Association UKAEA

This paper reviews the work of many people from UKAEA, EFDA Close Support Unit and the EFDA Associations.
Contents

1. Results from JET Operations
2. JET Enhancements
3. Tritium Technology
4. Remote Handling
5. Conclusion
JET Operations

- Unique ITER relevant capability:
 - Tritium operation / recycling
 - Remote handling
 - Beryllium
 - Size (90m³ plasma, 4 Tesla)
 - NB, RF, LH, pellets, diagnostics….

- ITER-like high triangularity scenarios (>0.47)
 - $H=1, \, n=1.1 \times n_G @ 2.5MA$

- Advanced ITB’s, ‘Steady state’ scenarios…

cf J Pamela, SOFT

A Kaye, 16th ANS Topical Meeting on technology of Fusion Energy, Madison, Wisconsin, 14-16 September, 2004
Highly shaped scenarios:
- High vertical forces (x2)
- Management controls

Energy quench:
- Flux to divertor and FW
- Good for ITER divertor!

Fast current quench scaling to ITER:
- c. 40ms independent of thermal stored energy

Diagnostic upgrade in hand:
- More halo probes
- Fast gas valve

cf V Riccardo

Measure v. predicted vertical force (tonnes)
Recent Enhancements - NB Heating Power Upgrade

- New power supplies (2)
 130 kV x 130 A, switched mode

- New PINI accelerators to double current (to 60A)

- New beam scraper to handle increased power

-22.7 MW total NB injection

- Neutraliser modifications (cooled septum) being implemented to reach 25 MW potential

cf. D C Edwards, SOFT
D Ciric, SOFT

A Kaye, 16th ANS Topical Meeting on technology of Fusion Energy, Madison, Wisconsin, 14-16 September, 2004
Conjugate-T Marching of RF Antenna

- Two A2 antenna straps connected with remote conjugate-T

- VSWR remains below c. 1.5 at generator during ELMs

cf. I Monakhov, SOFT
LHCD Matching at ITER Relevant Gaps to the Separatrix

Good coupling /current drive efficiency at 100mm gap to separatrix

Gas puffing adjacent to launcher, effective with D$_2$ and CD$_4$ (cf also Tore Supra)

Sensitive to puffing location/rate (10^{22} elect/s)

Requires further understanding to allow extrapolation to ITER

cf. A Ekdahl, EPS
J Mailloux, IAEA
Extreme Shape Control

Simultaneous control of up to 36 gaps to first wall

Safe operation of highly shaped ITER-like scenarios

Pulse No. 61995 Termination with XSC

Pulse Termination of Highly Shaped Scenario using Extreme Shape Controller
cf. R Albanese, SOFT
The JET ‘EP’ Enhancements: Divertor

- Load bearing divertor septum
- New inner protection tiles
- Refurbished magnetics/Langmuir probes/bolometer
- More halo probes

Allows ITER-like scenarios with increased lower triangularity (0.56) with strong additional heating (40MW for 10sec)
EP Diagnostic Enhancements

• Around 20 new or improved diagnostics - including burning plasma diagnostics (lost alpha and neutron detectors)

• Lost alpha diagnostics include Faraday cup array (from PPPL) and scintillator probe (from IPP)
EP Tritium Retention Diagnostics

- Tritium related diagnostics being installed in the divertor

A Kaye, 16th ANS Topical Meeting on technology of Fusion Energy, Madison, Wisconsin, 14-16 September, 2004
EP ICRH Antenna

- New ITER-like ICRF antenna to be installed Nov 2005
- 8 short straps
- Internal conjugate-T matching
- Target: 7.5 MW coupled power, 30-55 MHz
- Matching and capacitors critical!

cf. F Durodie, SOFT
Trace Tritium Campaign

1-3% tritium campaign with tritium NB injection implemented in autumn 2003

• Limits to the Experiment
 – 14 MeV neutron production: 10^{19}
 (320 μSievert/hr 4 months into shutdown)
 – Tritium to torus: 0.5 g
 – Tritium on torus cryopump: 0.7 g

• Tritium Inventory
 – Total of 5 g through machine (of which 4.5 g in NB, 2 ion sources)
 – Negligible additional tritium retained in torus after clean-up

• Safety Issues
 – Nearly equivalent to full tritium campaign
 – Prior review of safety case / approval by Safety Committee
 – Technical review of Key Safety Equipment - some upgrades
 – Extensive training of personnel

 cf T T C Jones, Baden Baden
Alpha particle Localisation during a TTE Pulse

TTE PHYSICS OBJECTIVES

Study of:

- Tritium transport
- Alpha particle dynamics
- Heating and current drive

Using

- 80 ms Tritium gas puffs
- 500 ms NB tritium injection

cf K-D Zastrow, EPS

Gamma emissivity from 9Be(α,n$^\gamma$)12C

A Kaye, 16th ANS Topical Meeting on technology of Fusion Energy, Madison, Wisconsin, 14-16 September, 2004
Tritium Retention

- Re-deposition on inner strike point/erosion at outer and FW (grad B drift up)
- Co-deposition of tritium at inner strike point; up to 1 TBq/g, surface area 4-7 m²/g
- Some strongly bound in carbon matrix

cf P Coad, Baden Baden

A Kaye, 16th ANS Topical Meeting on technology of Fusion Energy, Madison, Wisconsin, 14-16 September, 2004
Tritium Technology

- Detritiation
 - Oxygen-methane flame effective at detritiation of CFC waste
 - Pulsed flash-lamp (300J x 10Hz) detritiation of carbon films on CFC tiles in-vessel being evaluated (including in-vessel demonstration)
 - Pulsed laser system for Carbon films is under development at KFK and PPPL
 - Water detritiation facility being optimised at FZK for use at JET
 Combined Electrolysis and Catalytic Exchange method
 10 tonnes throughput, 10^4 decontamination factor

- Cryosorption Pumping
 - ITER activated charcoal supercooled LHE panel supplied by FZK
 installed in JET tritium plant for study of tritium characteristics

- Safety Issues
 - Assessment of hazards of highly tritiated dust and flakes.
 - Cumulative experience in management of safety of a tritiated machine over an extended period

 cf BADEN BADEN papers
JET Activation Since 1990

- Dose rate at manned access June, 2004
 260 \(\mu\text{Sievert/hr}\)

of which long lived activation from DTE1
(Co 60, 5 year half life)

100 \(\mu\text{Sievert/hr}\)

A Kaye, 16th ANS Topical Meeting on technology of Fusion Energy, Madison, Wisconsin, 14-16 September, 2004
Remote Handling

- **Virtual reality**
 Development of procedures/training implemented largely using virtual reality software

- **Force feedback**
 Force feedback to the operator from strain gauge transducers in the boom - load capability extended to load capacity of boom (400 kg)

Present shutdown has 10 months remote handling, 1 month manned access - 80% reduction in dose to c.40 man.milliSieverts.

A Kaye, 16th ANS Topical Meeting on technology of Fusion Energy, Madison, Wisconsin, 14-16 September, 2004
Conclusions

• JET has unique capability and contributes to ITER in many areas, both operations and technology

• Many enhancements have been implemented over the past five years, and continue to be implemented in the present shutdown

• JET contributes especially in Tritium technology, and has recently run a further trace tritium campaign

• JET has a strong remote handling capability which allows major enhancements to be implemented despite machine activation and tritium operations.