Perspectives on Greenhouse Gas Emissions and Energy Payback Ratios for Fusion Power

Paul Meier
Gerald L. Kulcinski

Fusion Technology Institute
University of Wisconsin
Madison WI

U.S./Japan Workshop on Fusion Power Plant Studies and Advanced Technologies
International Energy Agency Task Meeting on Socio-Economics Aspects of Fusion Power
17 March 2000
University of California, San Diego CA
Objective

- Calculate the Energy Payback Ratio (EPR) for Coal, Natural Gas, Fission, Wind, and DT Fusion Electrical Power Plants
  
  *Perform "Birth to Death Analysis"*

- Calculate the Greenhouse Gas Emissions Associated With Coal, Natural Gas, Fission, Wind, and DT Fusion Electrical Power Plants

  *Include all fossil input to fuel and structural materials procurement, operations, and decommissioning*

- Assess How the U.S. Electrical Generating System Can "Do Its Share" to Meet the 1997 Kyoto Limits

  *Consider the 1990 minus 7% case*
The Energy Investment in a Power Plant is Comprised of Many Components

- Energy to Decommission Reactor: $\text{GJ} / \text{GWe}$
- Energy to Construct Reactor: $\text{GJ} / \text{GWe}$
- Material Inventory: $\text{GJ / kg of material}$
- Energy to Operate Reactor: $\text{GJ / GWe}$
- Power Plant Equipment Operation: $\text{GJ / GWe}$
- Fuel Gathering: $\text{GJ / GWe}$

- Total Energy Investment: $\frac{\text{GJ}}{\text{GW}_e \text{-yr}}$

Options for Fuel Gathering:
- Natural Gas
- Coal
- Uranium
- Deuterium & Lithium
Calculation of Energy Payback Ratio (EPR)

\[
EPR = \frac{E_{n,L}}{E_{mat,L} + E_{con,L} + E_{op,L} + E_{dec,L}}
\]

where
- \( E_{n,L} \) = the net electrical energy produced over a given plant lifetime, L.
- \( E_{mat,L} \) = total energy invested in materials used over a plant lifetime L.
- \( E_{con,L} \) = total energy invested in construction for a plant with lifetime L.
- \( E_{op,L} \) = total energy invested in operating the plant over the lifetime L.
- \( E_{dec,L} \) = total energy invested in decommissioning a plant after it has operated for a lifetime L.
## Summary of the Normalized Energy Investments Made in Electrical Generating Plants- (TJ\textsubscript{th}/GW\textsubscript{e}y)

<table>
<thead>
<tr>
<th>Process</th>
<th>Coal</th>
<th>Natural Gas</th>
<th>Wind</th>
<th>Fission</th>
<th>DT Fusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel Related</td>
<td>2,318</td>
<td>6,932</td>
<td>0</td>
<td>1,299</td>
<td>30</td>
</tr>
<tr>
<td>Plant Materials &amp; Operation</td>
<td>147</td>
<td>147</td>
<td>875</td>
<td>195</td>
<td>927</td>
</tr>
<tr>
<td>Decommissioning</td>
<td>440</td>
<td>418</td>
<td>489</td>
<td>239</td>
<td>318</td>
</tr>
<tr>
<td>Total</td>
<td>2,925</td>
<td>7,508</td>
<td>1,414</td>
<td>1,923</td>
<td>1,326</td>
</tr>
<tr>
<td>Energy Payback</td>
<td>11</td>
<td>4</td>
<td>23</td>
<td>16</td>
<td>24</td>
</tr>
</tbody>
</table>
The Energy Payback Ratio Varies by a Factor of Nearly 6 Between Natural Gas and Fusion Power

- Natural Gas: 4
- Coal: 11
- Fission: 16
- Wind: 23
- Fusion DT: 24
## Summary of the Normalized Greenhouse Gas Emission Factors

*(Tonnes CO₂/GWeh)*

<table>
<thead>
<tr>
<th>Process</th>
<th>Coal</th>
<th>Natural Gas</th>
<th>Wind</th>
<th>Fission</th>
<th>DT Fusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel Related</td>
<td>17</td>
<td>76</td>
<td>0</td>
<td>10</td>
<td>0.2</td>
</tr>
<tr>
<td>Plant Materials &amp; Operation</td>
<td>1</td>
<td>1</td>
<td>10</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>decomposition</td>
<td>0.2</td>
<td>0.1</td>
<td>0.4</td>
<td>1</td>
<td>0.4</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>974</strong></td>
<td><strong>446</strong></td>
<td><strong>14</strong></td>
<td><strong>15</strong></td>
<td><strong>11</strong></td>
</tr>
</tbody>
</table>
Relative to the CO$_2$ Emissions of Coal, Those from the Nuclear and Wind Technologies are Low, But Not Zero
U.S. Electricity Generation Contribution
Using this mixture of technologies, 1998 U.S. Electricity Production of 3.6 million GWₜₜ resulted in GHG emissions of about 2.2 billion metric tonnes.
If the following “mixtures” could have been used to produce the same amount of electricity, they would have emitted the same amount of CO$_2$ equivalent.
Mixtures to the RIGHT of the line, would result in fewer emissions, while mixtures to the LEFT of the line would result in higher emissions.
Relative CO$_2$-equivalent Emissions

As shown previously, this line represents a constant emission line for the current electricity consumption levels.

<table>
<thead>
<tr>
<th>Electricity Production (10$^6$ GWeh)</th>
<th>CO$_2$ Emission (10$^9$ tonnes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.6</td>
<td>2.2</td>
</tr>
</tbody>
</table>
Relative CO₂-equivalent Emissions

However, if we want to **maintain the same electricity consumption**, but **decrease emissions** to 7% below 1990 levels (Kyoto Protocol), the constant emission line would shift to the right. Anything to the right of this line, would be below the target emission level.
If we wanted to **increase electricity consumption** to projected 2010 levels (4.2 million GW\textsubscript{e}h), and still **decrease emissions** to the Kyoto target, the constant emission line would shift further to the right.
20 Years of Increased Reliance on Coal and Nuclear Power Sources Stalled in the 1990's
There Would Have to be a Major Shift Toward Nuclear/Renewable and Natural Gas Technologies, In Order to Immediately Comply With the 1997 Kyoto Emission Target for the U.S.

Any point along this line would satisfy the 1997 Kyoto emission target for the U.S. at 1999 electricity generation rates.
An Increasing Reliance on Nuclear and Renewable Sources is Required, if Proposed Kyoto Emission Targets Were Satisfied at Anticipated Future Electricity Growth Rates (1.3%).

2010
4.2x10^6 GW\_e\_h

2050
7.1x10^6 GW\_e\_h
What If the U.S. Chooses to Comply With the 1997 Kyoto Greenhouse Gas Emission Targets?

- What is the Requirement for Low Greenhouse Gas Emitting Power Generating Plants in the 2000-2050 Period?

  Assume: 1.3% annual growth rate for electricity (conservative, EIA)

  Assume: The electricity generating sector will reduce emissions to 1990 level minus 7%

*Future Electrical Growth assumed 1.3%
**Target assumes that the U.S. electric industry meets its proportion of the Kyoto commitment by reducing emissions to 7% below its 1990 baseline.
The Absolute Amount of Electricity Required From Nuclear/Renewable Sources is More Than 4 Times the 2000 Level if the U.S. is to Meet the 1997 Kyoto GHG target**.

- **Future Electrical Growth assumed 1.3%**
- **Target assumes that the U.S. electric industry meets its proportion of the Kyoto commitment by reducing emissions to 7% below its 1990 baseline.**
What If the Level of Electricity from Fission and Hydro Sources Remain Constant in the 2000-2050 Time Period?

- The electricity generated from other low GHG emitting sources (wind, solar, fusion, etc.) must increase dramatically after 2010.

Assume: Net amount of electricity from fission and hydro is not changed from 2000 level

Assume: New fission and hydro replace retired fission and hydro in the 2000-2050 period
If Fission and Hydro Sources are Kept Constant, Other Sources of Low GHG Emitting Power Plants Are Needed No Later Than 2010 if the U.S. is to Meet the 1997 Kyoto GHG Target.

* Implies potential for any nuclear or renewable technology other than fission or hydroelectricity.
** Future Electrical Growth assumed 1.3%
** Target assumes that the U.S. electric industry meets its proportion of the Kyoto commitment by reducing emissions to 7% below its 1990 baseline.
In Order to Meet the 1997 Kyoto Target for the U.S., the Absolute Amount of Electricity From Low GHG Emitting Technologies Will Have to Be Approximately 3 Times the Current Level by the Year 2050.

* Implies potential for any nuclear or renewable technology other than fission or hydroelectricity.
** Future Electrical Growth assumed 1.3% ** Target assumes that the U.S. electric industry meets its proportion of the Kyoto commitment by reducing emissions to 7% below its 1990 baseline.
Conclusions

- The "birth to death" analysis of energy payback ratios (EPR's) for electrical generating plants reveals that DT fusion plants have one of the highest EPR values at 24.

  This compares to 4-23 for conventional (natural gas, coal, fission, and wind) power stations.

- The greenhouse gas emission rate per GW\(_e\)h for DT fusion plants is low at 11 tonnes CO\(_2\)/ GW\(_e\)h.

  This compares favorably to 14-15 for wind and fission respectively and 446 to 974 for natural gas and coal respectively.
Adherence to the 1997 Kyoto agreements (1990 minus 7% emission rates and 1.3%/y demand growth rates) will require quadrupling the nuclear/renewable capacity in United States over the next 50 years (not considering replacements).

Factoring in replacements, quadrupling requires \( \approx 600 \) new 1000 MW\(_e\) low-greenhouse gas emitting electricity-generating power plants in the U. S. over the next 50 years.