Increasing chamber armor lifetime with the tamped target design and low-pressure buffer gas

Thad Heltemes and Gregory Moses
High Average Power Laser Program
17th Workshop

October 30-31, 2007
Naval Research Laboratory
Washington DC
Two first-wall assembly lifetime limits are approximately 2 FPY

- Neutron damage (100 DPA)
 - 3 FPY lifetime
- Thermal stress due to rapid cyclical temperature rise.
 - 2400°C for tungsten or 1000°C for silicon carbide limits.
 - 2 FPY lifetime
- Morphology change and armor erosion due to alpha implantation.
 - Onset at ~10^{17} ions/cm2
 - 7.5 FPD to onset
 - Low-energy alpha erosion of tungsten armor ~1 µm per 10^{19} ions/cm2.
 - 2 FPY lifetime
 - Significant uncertainty in tungsten armor lifetime.
Preventing alpha induced morphology change by increasing buffer gas pressure is impractical.

The key problem with a buffer gas is too many 3.5 MeV alpha particles escape the target and impact the wall.
Target configurations at time of ignition demonstrate the effect of the tamper on alpha confinement

- The tamper traps 99.5% of the fusion alphas inside the debris plasma
- Alpha particle kinetic energy is partially converted to x-ray energy by interaction with the debris plasma
Alpha spectrum comparison of standard HAPL and tamped targets

![Graph showing ion spectrum comparison for standard HAPL and tamped targets.](image)
Alpha spectrum at the wall demonstrates the effect of the buffer gas on reducing alpha fluence into the tungsten armor.
Tamped target exacerbates tungsten surface temperature response when combined with minimal buffer gas.

~3x x-ray yield

No high-energy alphas
Tungsten surface temperature comparison of standard HAPL target with no buffer gas and the tamped target with sufficient gas to stop low-energy alphas.
Tungsten surface temperature comparison of standard HAPL target with no buffer gas and the tamped target with sufficient gas to stop low-energy alphas.
Alpha penetration into tungsten for the HAPL standard target with 0.5 mtorr helium buffer gas
Alpha penetration into near-surface tungsten for the HAPL standard target and 0.5 mtorr helium buffer gas
Alpha penetration into tungsten for the tamped target and 0.5 mtorr helium buffer gas
Alpha penetration into tungsten for the tamped target and 11.6 mtorr helium buffer gas
Conclusions and future work

• A tamped target with no buffer gas increases the temperature transient of the tungsten armor surface to both x-rays and debris ions to unacceptable maxima.

• A tamped target along with He buffer gas meets the thermal constraints of the tungsten armor surface but does not sufficiently reduce the alpha particle fluence to the tungsten armor to avoid the onset of morphology change.

• The onset of morphology change in tungsten armor is a limiting parameter in this design option. Trace numbers of alphas lead to morphology change.

• What is the cross field alpha particle leakage in the magnetic protection approach?
X-ray yield of tamped target is $\sim 3\times$ larger than the HAPL standard target.

A note of caution: we are comparing the x-ray yield of a tamped target simulated with the BUCKY code to the standard HAPL target simulated by LLNL.
Deuteron spectrum comparison, 365 MJ Yield

![Graph showing deuteron spectrum comparison with two lines representing HAPL Standard Target Deuterons and Tamped Target Deuterons.](image)
Triton spectrum comparison, 365 MJ Fusion Yield

![Graph of triton spectrum comparison showing ion energy vs. ions per bin for HAPL standard target tritons and tamped target tritons. The graph indicates a comparison of triton yield at different ion energies.]