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Xenon Gasin SOMBRERO ProtectsFirst Wall

°In SOMBRERO, 0.5 Torr of Xe
stops 1.6 MeV carbon ions
(containing most of the non-
neutronic target output) before they
reach the target chamber wall.

*Thefireball radiation emissionis
slow enough that the graphite first
wall stays below the sublimation
limit. Bucky predicts a peak surface
temperature 2,155 C.

*The shock applied to the wall
applies and impulse of 2.21 Pa-s and
a peak pressure of 0.013 MPa.

BUCKY simulations show that wall
survival is sensitive to X e opacity.
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Variables Considered For Choosing the Cavity
Gas Environment in SOMBRERO
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Xenon Gasin SOMBRERO Spreads Out the heat

Transfer tothe Wall of the Target Chamber

«100 MJof X-rays
and Debrislons are
Released by the target
over about 10 ns.

e X enon Gas absorbs
target x-rays and ions.

*(Gas radiates energy
to the wall over about
100 us.
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L aser Propagation in Target Chamber Gases
Limits Fill Gas Density

oL_aser beams need to avoid laser
breakdown of the fill gas and plasma
instabilities that can lead to unsmooth
beams or poor |aser-target coupling.

*SOMBRERO callsfor 33 TW/cm? 0.25 u
laser light on the surface of the target.

*The breakdown threshold is one way of
measuring how well the laser traverses the
gas.

*The breakdown threshold depends on
laser wavel ength, pulse shape, coherence,
uniformity, focal length and gas
conditions.

*Old data show that it is possible that KrF
diver beams may traverse 1 Torr of
Xenon; more experiments must confirm
this.
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Direct-Drive Target Output is Dominated by
Neutrons and Energetic Ablator Ions

Debris|ons X-Rays
A4kevV D- 581LMJ 22 41 MJ

141keV T- 8.72MJ 'SOMBRERO Targel
138keV H- 9.24 MJ :

188 keV He- 4.49MJ
1600 keV C- 55.24 MJ
Total - 383.24 MJ

Target X-ray Spectrum
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The Peak First Wall Temperaturesin SOMBRERO Depend
on the Thermal Conductivity of the First Few Microns
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The Thermal Conductivity of Pyrolytic Graphite, Carbon Fibers
and C-C Composites Dropswith Increasing Temperature

| Source: IZI)inw iddie et. IaI., 1991, Bulrchell-1996,
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Neutron Irradiated Thermal Conductivity of Graphiteat = 1-2 dpa
Approaches Un-irradiated Thermal Values at High Temperatures
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Once the Evaporation isBelow a Few A Per Shot There
IS Essentially No Erosion of the C-C First Wall
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Target Heating During Injection has been Calculated

Transient Finite Element Model:

Assumptions;

- Spherical Finite Element Model
(ANSYS5.4).
- Layers of the Modd!:

. The Target is rotating/spinning
during flight (homogeneous surface
heating, due to aerodynamic friction).

0.18 cm » Thermal conductivity of the outer
0.2077 cm shell, ¥ (CH) = 0.035 W/m K.

0.2295 cm nitial Temperature, T, = 14K .

Inner radius of the DT-1
Outer radius of the DT-1
Outer radius of the DT-2

Outer radius of the DT-1 = 0.22958 cm o
Density of DT (ice) = 0.2125 g/cm? . Most of the targgt surfgce heating is
due to aerodynamic heating
. (Friction).
Plastic The Outer-Edge of . o
the Inner DT Shell (DT-1) . The model is considering two phase
[ DT Shell (DT-1) liquid to gas).
-<
0.22958 cm
Fusion Technology Institute Direct-Drive
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Surface Heating dueto Friction Varieswith Gas
Density and Target Speed

50
CQ'\
&
&)
~~
; //
- 4.0 =
- XePressure=2Torr -
.9 //
E = —
(& -
= 3.0 —
LL S el N N
9 XePressure= 1Torr |t T
o e
L e
(@) XePressure= 0.5 Torr L=+ =T
= -
§ 1.0
L XePressure=0.1Torr S Y I
% P e T e T R s
£ S i o
; 0.0 A S
200 250 300 350 400
Tal‘get Sp (m/S) " University of
- ' Wisconsin-M adison
Fusion Technology Institute nhen

University of Wisconsin - Madison



Target Heating by Thermal Radiation May be Minimized
by Coating the Target with a High Reflectivity M etal

Ref: “A Physicist’s Desk Reference”, edited by H.L. Anderson (AIP Press, 1981)
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Target Heating Calculations Show that Very L ow Heat
Loadswill Warm Outer DT by Several ° K

*ANSY S calculations
out to 15 ms.

*Perfect contact is
assumed.

*Evenat 1.0 W/cm?,
outer DT increases by 3
Ktol7K.

eInner DT heats by less
than 0.5 K, even at much
higher heating.
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Experimental Validation of Chamber
Dynamicsin Gas-Protected Chambers

e Target Output
eRadiation Transport

*Gas Opacity

eTarget Heating

*Thermal Properties of Wall Material
*\Wall Evaporation
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Target Output Predictions Need to be Validated
by Experiments

Ablator

*Chamber fill gas wall protection Material
requirements set by ion spectrum.
*High energy density experiments - —>
could validate code predictionsis  x_rgys —*
asystem that mimics conditions gy |gger — —>
In ablator of exploding target. —

— > —>
*Experiments could be doneon Z,
SATURN, or alaser. detector
Fusion Technology Institute Direct-Drive
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Radiation Transport in Gas Protected Target Chambers

SOMBRERO
| Ssu€e: Radiation Transport in SOMBRERO : i
fireballsisfar out of equilibrium and flux- T e
limited radiation diffusion must be

validated.

Temperature (eV)

Status. Radiation-hydro codes (BUCKY,
RAGE, Lasnex) can model radiation-
dominated-blasts. NRL laser generated
blasts in the 80’ s showed that radiation fronts TR . Sﬁ’% - (C%é)o 500600
can be unstable.

Needs. High energy density (enough Z hohlraum
to heat Xeto ~ 100 eV) experiments on &

Z would simulate radiation dominated

blasts. Need a sample large enough to o5
be optically thick. z-pinch

Fusion Technology Institute Direct-Drive

University of Wisconsin - Madison



Laser Generated Fireballswere Seen to Preferentially
Propagate Along L aser Path

«1988 NRL Laser
Generated Fireball
Experiments Show
Propagation in Laser
Path Ahead of Main
Fireball.

Dark-field
Shadowgrams at 71
and 146 ns.
*Reduced Opacity in
Laser Path dueto

L aser Heating.

J.A. Stamper, et a., Phys. Fluids 31, 3353 (1988).
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Atomic Physics and Opacity Effects Dictate Fireball
Behavior: Experiments are Needed

|SSUE: Gas opacity dominates . Sopetwitines
fireball dynamics. Fireball dynamics =t\ =~ |
determines survival of first wall. oo
S Ho Cemes T0nopachy
PROBLEM: For SOMBRERO il
Xenon (Z=54) has avery complicated £ |
atomic structure, leading to a great )
many lines that cannot be modeled L = “ ZrgEgmay
with any reasonable group structure et
in aradiation hydrodynamics creray B Detector
calculation. Source || o Gas
Experimental Validation: Theopacity =~ ™= Ja—,, Tamper
needs to be measured at about 1 Torr
and 100 eV 1
Fusion Technology Institute Direct-Drive
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Wall Thermal and Mechanical Loading is Sensitiveto
Gas Opacity

BUCKY Radiation Diffusion
Xe opacity without lines
—&—— Heat Flux (p,) 400 MJ Target
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In SOMBRERO Radiation Flow is Governed by
Emission, NOT Transport

*Highest opacity at the
edge of the fireball isthe
barrier to radiation

BUCKY Radiation Diffusion
Xe opacity without lines
400 MJ Target
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Heating During I njection of Direct-Drive Targets Could
Govern Chamber Design: Need Experiments

ISSUE: Frictional heating of injected  ——fvesrmmmsrmmmrn 1
direct drive targets could warm outer = ,/i
parts of cryogenic fuel by several °© K > R
*STATUS: Calculationsshowthat @ | I

total heating of afew W/cm? warm ?E: T T
outer fuel by afew °K. Doesthis & | o ===
distort target unacceptably? ﬁ.EJ pas.: /Z/E\S“Sh |
-EXPERIMENTS: Cryogenictargets “1 /  Smem__ ...
need to be heated by afew ° K witha ., ===

calibrated surface source and the

0 05 1 15 2 25 3 35 4 45 5 655 6 65

condition of the fuel observed via Total Surface Heating (W/crm?)
radiography.
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Materials Qualification Experiment for C/SIC

e PUrpose:
M easur e the thermal conductivity of C/SIC at temperatures
of 1,500 to 2,000 °C while being irradiated with neutronsto at
least 1 dpa:
~ 2% 10% n/cm? fast neutron HFIR (or equivalent) spectra
" 8x10%° n/cm? 14 MeV RTNS (or equivalent) spectra

* Objective:
To deter mine the amount of degradation in k from
unirradiated values at high temperatures

e Goal:
|dentify a C/SIC material that can maintain ak of © 100
W/m°K whileit isunder neutron irradiation

Fusion Technology Institute
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Wall Material Erosion Experiments are Possible

on Existing Facilities (e.g. Z, Omega, GEKK O)

|ssue: X-ray vaporization of wall materialsin gas =
protected chambers may erode wall at an unacceptable
rate. About 108 shots per year times 0.1 A per shot

would erode 1 mm per year. But 0.1 A isfar lessthan a

mono-layer. Mono-layer
Status. BUCKY (continuum) calculations show that ] hIZraum
It is possible to get wall erosion per shot of lessthan 1 %
mono-layer of material loss per shot, but what does Erosion
that mean? Sample
Needs: Z, NIF, Omega, or GEKK O experiments z-pinchX Ty
Z hohlraum

could supply enough energy (in x-rays or from thermal
radiation from a gas) to investigate evaporation near
and below 1 mono-layer per shot.

Z-pinch

Fusion Technology Institute Direct-Drive
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