Pulsed Operation of the UW-IEC Device

Ross Radel
University of Wisconsin

8th US-Japan Workshop
Kansai University
May 10th, 2006
Outline

• HEU detection methods
• UW pulsed IEC design
• High-speed diagnostics
• Neutron production characteristics
• Summary and future work
Importance of Research

• There have been at least 150 incidents of nuclear smuggling in past decade (IAEA)

• Half involve enriched uranium or plutonium

• As little as 16 kg of HEU or 6 kg of Pu can be used to produce a 20 kiloton weapon, even with low technology levels

• Border security is a proven safeguard, but technology to detect HEU is not yet available

• Developing technology for the detection of HEU has become a priority for the US Department of Homeland Security
There are Two Categories of Non-Destructive Special Nuclear Material Detection

• Passive and active detection

• Passive detection is unreliable for HEU
 – Low count rates
 – Simple to shield
 – Calorimetry easy to deceive

• Active Detection is more applicable
 – Neutrons or photons
 – Neutrons are highly penetrating in high-Z material
 – Large fission cross-sections
UW Concept for Active Detection of HEU

IEC → D-D neutrons → HEU → Fission neutrons

Prompt & Delayed

Neutrons

Time

5
Initial Design Uses Ion Source to Generate Pulses

- 200kV Power Supply
- Filament temperature control
- DC bias
- Pulse generator
- 100 nf
- HEU
- Paraffin Wax
- Neutron Detector
Pulse Video

- Video taken at 80 kV, 0.3 Pa D₂, 500 mA pulse current
Current Status

- Max Voltage: 110 kV
- Max Pulse Current: 3 Amps

- Shortest Pulse: 10 µs
 - Cathode current: ~70 µs
 - With “flat top” current: 200 µs

- Max Neutron Rate During Pulse to Date:
 - 1.5×10^9 n/s (80 kV, 3 A, 0.38 Pa D_2)
High-Speed LabVIEW Diagnostic
Provides View of Pulse Trace

![Graph showing Cathode Current and Filament Bias Voltage over time](image)
High-Speed Neutron Diagnostics Provide Greater Insight into Pulsed Operation
Larger Cathode Yielded Higher Pulse Current and Neutron Rates

- Pulse current increased by ~20% when switching from 10cm to 20 cm cathode
- Average ion energy is higher
 - Ions encounter fewer neutrals as they are accelerated

Past Configuration

Current Configuration

Future Configuration?
Pulse Current Increases Linearly with Cathode Voltage

constant source conditions for both experiments
Neutron Rate Scaled Less Than Linearly With Pulse Current in Initial Design

- Filament power adjusted to change current
- 10 kΩ resistor currently in series with IEC to limit arc current
- Cathode voltage drops accordingly with increased pulse current
- Future design will reduce resistor to 1 kΩ

Data taken at 90 kV (meter), 0.36 Pa D₂
Summary

• Pulsed IEC has been developed that is capable of operation at 110 kV, 2.4 A, 0.37 Pa D₂

• Pulsed neutron rates of 1.5×10^9 n/s have been achieved during 500 µs pulses

• New diagnostics have provided greater insight to high-speed operation

• Operation with 20 cm cathode has improved pulse current and neutron rates
Future Experiments will Focus on Increasing Pulse Current and Neutron Production

- Generate higher current from filaments
 - Study contributions of individual filaments
 - Add additional filaments
 - Increase negative pulse voltage

- Pull more current into cathode
 - Increase cathode size
 - Recent experiments have looked at 10 cm vs. 20 cm cathodes
 - Replace 50 cm anode with 35 cm anode

- Begin irradiation of HEU samples
 - Detection hardware is available for initial experiments
 - HEU sample should be available in near future
Questions?