Application of CAD-Neutronics Coupling to Geometrically Complex Fusion Systems

Mohamed Sawan,
P. Wilson, T. Tautges(ANL), L. El-Guebaly,
D. Henderson, T. Bohm, E. Marriott, B. Kiedrowski,
B. Smith, A. Ibrahim, R. Slaybaugh

Fusion Technology Institute
University of Wisconsin

23rd Symposium on Fusion Engineering
SOFE-2009

San Diego, California
May 31– June 5, 2009
Outline

• Motivations
• DAGMC approach
• Implementation
• Acceleration Techniques
• Applications
 - ITER
 - ARIES-CS
 - HAPL
Fusion Reactors are Complex with Many Components

Central Solenoid
Nb₃Sn, 6 modules

Outer Intercoil Structure

Toroidal Field Coil
Nb₃Sn, 18, wedged

Poloidal Field Coil
Nb-Ti, 6

Machine Gravity Supports
(recently remodelled)

Blanket Module
421 modules

Vacuum Vessel
9 sectors

Cryostat
24 m high x 28 m dia.

Port Plug (IC Heating)
6 heating
3 test blankets
2 limiters/RH
rem. diagnostics

Divertor
54 cassettes

Torus Cryopump
8, rearranged
Nuclear Analysis is Essential Part of Fusion Reactor Design

- Tritium production in breeding blankets to ensure tritium self-sufficiency
- Nuclear heating (energy deposition) for thermal analysis and cooling requirement
- Radiation damage in structural material and other sensitive components for lifetime assessment
- Provide adequate shielding for components (e.g., magnets) and personnel access
- Activation analysis for safety assessment and radwaste management
Motivations

• Engineering designs dominated by computer-aided design processes
• Generating input files manually can be a tedious and error-prone process
• Automation (including translation) provides:
 – Reduced human effort
 – Increased quality assurance
 – Faster design iteration
• Direct geometry use (DAGMC) provides additional advantages
 – Richer surface representation that allows higher-order surface descriptions in analysis
 – Provide common domain for coupling to other engineering analyses
• Use Mesh Oriented dAtaBase (MOAB) and Common Geometry Module (CGM) to interface MC code \textit{directly} to CAD (\& other) geometry data

• Ray-tracing acceleration techniques used allowing for tracking speeds that are within a factor of 2-3 of native MCNP

• Production experience
 – ITER Benchmark
 – ITER FWS
 – ITER TBM
 – ARIES-CS
 – HAPL
Workflow Includes a Variety of New Tools and Skills

Generate CAD Geometry

- Standard CAD software tools are used to define the solid model

Annotate CAD Geometry

- Allocate materials and densities
- Define boundary conditions
- Define tally locations
- Imprint & Merge

Prepare Input File

- Skip cell and surface definitions
- Provide data cards
 - Material definitions
 - Tally modifiers
 - Source definition
 - etc...

DAG-MCNP

- Read Model and Initialize Search Tree

Perform Random Walks

Report Tally Results
Accelerations

• Imprint & merge
 – Reduce complexity of determining neighboring regions in space

• Faceting
 – Reduce ray-tracing to always be on (planar) facets

• Oriented Bounding Box Tree
 – Accelerate search of millions of surfaces
 – Reduce number of surface tests
Accelerating the Neighboring Cell Determination

- Imprinting
- Merging
- Each surface in max. 2 cells
Avoiding the Explicit Calculation of the “Complement”

- CAD-based solid models do not typically represent non-solid regions
 - e.g. voids, coolants
- Explicit calculation
 - Boolean operations in CAD (or CUBIT)
 - Often computationally expensive
- Implicit determination
 - Volume bounded by surfaces with only 1 cell following imprint & merge
Oriented Bounding Box on Facets as Nodes in a Tree

- Axis-aligned bounding box often larger than necessary
- *Oriented* bounding box makes smaller boxes
- OBB on facets allows finer-granularity boxes to be arranged in tree
- Tree of OBBs reduces # tests
CAD Issues Requiring “Repair”

Issue – Overlapping Volumes
Action – Edit geometry to establish proper contact

Issue – No Contact
Action – MAY require recreating volume

Edges cross at this point

Human effort shifts from traditional MCNP model creation to CAD/Solid Model repair
DAG-MCNP Functionality Status
(compared to standard MCNP)

Geometry
- Cell volume/Surface areas – functional
- Boundary conditions
 - Specular reflection – functional
 - White reflection – functional
 - Periodic – long term
- Lattice/universe – long term
- Material/Densities read from geom – functional

Source
- Fixed source – functional
- Fission source – functional
- Surface source write/read – functional

Variance Reduction
- Cell importance – functional
- Exponential transform – functional
- Forced collision – functional
- Weight windows (cell-based) – functional
- Weight windows (mesh-based) – functional
- Detector tallies - functional

Tallies
- Surface current (type 1) – functional
- Cosine bins – functional (directional ambiguity)
- Surface flux (type 2) – functional
- Cell flux (type 4,6,7) – functional
- Pulse height (type 8) – testing
- Point detector (type 5) – functional
- Mesh tallies – functional in MCNPX

Note: MCNP and MCNPX have different mesh tally implementations
- Cell flagging – functional
- Surface flagging – functional
- Multipliers – functional
- Segmenting – long term ??
- Tally locations read from geom – functional
Applications

- ITER Benchmark
- ITER FW/Shield Modules
- ITER DCLL TBM
- ARIES Compact Stellarator
- HAPL Laser Fusion Design
ITER Benchmark

- Comparing 4 results
 - Neutron wall loading
 - Divertor fluxes and heating
 - Magnet heating
 - Midplane port shielding/streaming

- Participants
 - UW, FZK, ASIPP, JAEA, UCLA
ITER Benchmark Model: >800 cells, ~10,000 surfaces
Overall Performance Less than 3x Slower than Native Geometry

- Performance of translation approaches vary by 60%

<table>
<thead>
<tr>
<th>Model</th>
<th>Number of Volumes</th>
<th>Number of Surfaces</th>
<th>Relative CPU-Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCAM translation</td>
<td>4148</td>
<td>3192</td>
<td>1</td>
</tr>
<tr>
<td>McCad translation</td>
<td>6031</td>
<td>3800</td>
<td>1.63</td>
</tr>
<tr>
<td>DAGMC</td>
<td>802</td>
<td>9834</td>
<td>2.46</td>
</tr>
</tbody>
</table>
ITER First Wall & Shield

- Design includes performing detailed structural, CFD and EM analyses
- Detailed high-resolution mapping of nuclear parameters (nuclear heating, radiation damage) in the module is an essential input to design

June 2009 23rd SOFE
Analysis for an Initial Mod 13 Design

ITER FW/Shield Heating [W/cm²] for NWL=0.693 MW/m²

Front Manifold

Distance in azimuthal direction at 11.5 cm from front of first wall [cm]

Height along z axis [cm]

Distance in radial direction [cm]

azimuthal direction [degrees]

0 10 20 30 40 50 60 70 80 90

1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9
Surface source determined from calculations for the full ITER model to used at FW front surface to accurately account for the 3-D source representation.
Nuclear heating calculated in FW layers

Cu Layer

Surface Source [w/cm²]

SS Layer

Surface Source [w/cm²]

Back Surface of FW

Front Surface of Shield

Front of Shield
Mesh Interpolation for Multi-Physics Analysis

- High-fidelity mesh tallies in MCNP
 - Large orthogonal regular grids (e.g. 26M voxels)
- Interpolate to CFD & heat transfer analysis mesh
 - Large unstructured tet-mesh (e.g. 15M elements)
- Based on MOAB scalable open-source infrastructure
 - KD-tree for MCNP mesh elements
 - Centroid or vertex interpolation on piecewise uniform mesh
 - Store
 - Volumetric heating on vertices, and/or
 - Integral heating on elements

June 2009 23rd SOFE
Interpolated mesh tallies used in CFD calculations (SC/Tetra code)

Temperature distribution in FW of Mod. 13 determined by Ying and Narula (UCLA) using the translated nuclear heating mesh tallies and the thermo-fluid CFD code SC/Tetra with ~11.5 million elements.

Be, Cu, SS, Water
Detailed 3-D Neutronics for DCLL TBM

Source Input Table

Mid-plane nuclear heating

Mid-plane T production

Steel damage at section X2

Mid-plane T production

DCLL TBM

June 2009

23rd SOFE
Overall TBM Nuclear Parameters

<table>
<thead>
<tr>
<th>Material</th>
<th>Total Nuclear Heating (MW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ferritic Steel</td>
<td>0.121</td>
</tr>
<tr>
<td>Lead Lithium</td>
<td>0.218</td>
</tr>
<tr>
<td>SiC FCI</td>
<td>0.028</td>
</tr>
<tr>
<td>Be PFC</td>
<td>0.007</td>
</tr>
<tr>
<td>Total</td>
<td>0.374</td>
</tr>
</tbody>
</table>

- Tritium generation rate in the PbLi is 4.19×10^{-7} g/s during a 500 MW D-T pulse.
- For the planned 3000 pulses per year annual tritium production in TBM is 0.53 g/year.
- Tritium production in the Be PFC is 1.04×10^{-3} g/year.

Detailed 3-D analysis of TBM with the surrounding massive water cooled frame and representation of exact source and other in-vessel components yields total tritium production and nuclear heating in TBM that are ~40% lower than the 1-D estimate.
Application to ARIES-CS Compact Stellarator

- Geometry complex
- FW shape and plasma profile vary toroidally within each field period
- Cannot be modeled by standard MCNP

Examined effect of helical geometry and non-uniform blanket and divertor on NWL distribution and total TBR and nuclear heating
ARIES-CS Overall Nuclear Parameters

NWL map

Summary of Energy Multiplication Results for LiPb/He/FS System

<table>
<thead>
<tr>
<th>Component/Area</th>
<th>6^Li Enrichment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30%</td>
</tr>
<tr>
<td>Blanket</td>
<td>0.99</td>
</tr>
<tr>
<td>Uniform</td>
<td>0.74</td>
</tr>
<tr>
<td>Nonuniform</td>
<td>0.24</td>
</tr>
<tr>
<td>Behind divertor</td>
<td>0.013</td>
</tr>
<tr>
<td>Shield</td>
<td>0.065</td>
</tr>
<tr>
<td>Main shield</td>
<td>0.045</td>
</tr>
<tr>
<td>Behind divertor</td>
<td>0.020</td>
</tr>
<tr>
<td>Manifold</td>
<td>0.0014</td>
</tr>
<tr>
<td>Divertor plates</td>
<td>0.10</td>
</tr>
<tr>
<td>ECH duct</td>
<td>5.7 x 10^-5</td>
</tr>
<tr>
<td>Total</td>
<td>1.16</td>
</tr>
<tr>
<td></td>
<td>(±0.13%)</td>
</tr>
</tbody>
</table>

aThe 1σ statistical error is shown for the total M_n in each case.

Summary of 3-D TBR Results for LiPb/He/FS System

<table>
<thead>
<tr>
<th>Blanket Region</th>
<th>6^Li Enrichment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30%</td>
</tr>
<tr>
<td>Uniform</td>
<td>0.73</td>
</tr>
<tr>
<td>Nonuniform</td>
<td>0.15</td>
</tr>
<tr>
<td>Behind divertor</td>
<td>0.022</td>
</tr>
<tr>
<td>Total</td>
<td>0.91</td>
</tr>
<tr>
<td></td>
<td>(±0.18%)</td>
</tr>
</tbody>
</table>

The 1σ statistical error is indicated for each case.
High Average Power Laser (HAPL) Conceptual Design

- Direct drive targets
- Dry wall chamber
- 40 KrF laser beams
- 367.1 MJ target yield
- 5 Hz Rep Rate

Design with Magnetic Intervention

Large Chamber Design
Fast neutron flux at dielectric optics depends on material choice for the GIMM and total GIMM areal density

- AlBeMet GIMM results in highest flux level (factor of ~1.6 higher than with lightweight SiC GIMM)
- Significant drop in nuclear environment occurs as one moves from the GIMM to dielectric focusing and turning mirrors
Quick assessment of configuration options was facilitated by use of DAG-MCNP.
Initial configuration yields least radiation environment at dielectric mirrors and was selected for baseline HAPL design.
Conclusions

• Fusion systems are geometrically complex with many components requiring detailed 3-D nuclear analysis

• DAG-MCNP was developed to perform the 3-D Monte Carlo neutronics calculations directly in the detailed CAD geometrical model

• This eliminates human error, improves accuracy, cuts down turnaround time to accommodate design changes and iterations, and allows efficient coupling to other engineering analyses

• The tool has been successfully validated using an ITER benchmark and applied to perform nuclear analysis for several fusion designs resulting in high-fidelity, high-resolution results that significantly improve the design process
Questions?

sawan@engr.wisc.edu
Neutron Wall Loading

![Graph showing Neutron Wall Loading with various lines representing different data sets: ASIPP, FZK, JAEA, UW, and UCLA. The graph plots NWL (MW/m²) against Module Number. The inset shows a source input table with radial and axial dimensions.](image)
Equatorial Port Results

![Graph showing neutron flux vs. distance from first wall]

- ASIPP
- FZK
- JAEA
- UCLA
- UW

Total Neutron Flux [n/cm²-s]

Distance from First Wall [cm]
• Build solid model in CAD or similar tools
• Define “graveyard”
 – Solid models are finite in extent
 – Require finite bounding cell with importance=0
• Dealing with “complement”
 – Most solid models do not define space that surrounds objects
 • Boolean operation in CAD tool to define complement volume
 • Implicit complement option automatically determines complement in DAGMC
• Export in format available to CUBIT/CGM
DAGMC Workflow
Geometry Manipulation

• Import into CUBIT
 – (Create complement in CUBIT)
• Imprint surfaces
• Merge surfaces
• Define MCNP info:
 – Material, density
 – Importance
 – Tally types/numbers
 – Reflecting surfaces
• Export in ACIS (.sat) format
CAD Issues Requiring “Repair”

Human effort shifts from traditional MCNP model creation to CAD/Solid Model repair

- Overlapping Volumes (i.e.: clashes)
- Mating surfaces not contacting
- Slight “Misalignment”