

Three-Dimensional Nuclear Analysis for the Final Optics System of HAPL

Mohamed Sawan, Ahmad Ibrahim, Tim Bohm, Paul Wilson

Fusion Technology Institute - University of Wisconsin, Madison, WI

Baseline HAPL Optics Configuration with GIMM

Objectives

- > Determine nuclear environment at the GIMM (M1), focusing mirror (M2), and turning mirror (M3) final optics of HAPL
- > Assess impact of GIMM design

Geometrical Model Used in 3-D Neutronics Analysis

Flux at Front Faceplate of GIMM

SiC GIMM	Neutrons E>0.1 MeV Total Neutrons Total Gamma	Flux (cm ⁻² .s ⁻¹) 1.39x10 ¹³ (±2.1%) 1.43x10 ¹³ (±2.1%) 1.57x10 ¹² (± 5.5%)
AlBeMet GIMM	Neutrons E>0.1 MeV Total Neutrons Total Gamma	1.21x10 ¹³ (±2.1%) 1.30x10 ¹³ (±2.1%) 1.88x10 ¹² (±4.4%)

Material choice and thickness slightly impacts peak flux in GIMM Neutron spectrum softer for AlBeMet with 93% >0.1 MeV compared to 97% for SiC

Flux at Focusing Dielectric Mirror M2 Located @14.9 m from GIMM				
		Flux (cm ⁻² .s ⁻¹)	Fluence per full power year (cm ⁻²)	
SiC GIMM	Neutrons E>0.1 MeV Total Neutrons Total Gamma	2.05x10 ¹⁰ (±4.0%) 2.27x10 ¹⁰ (±4.0%) 0.88x10 ¹⁰ (±6.9%)	6.46x10 ¹⁷ 7.15x10 ¹⁷ 2.77x10 ¹⁷	
AlBeMet GIMM	Neutrons E>0.1 MeV Total Neutrons Total Gamma	3.18x10 ¹⁰ (±3.9%) 3.57x10 ¹⁰ (±3.8%) 1.35x10 ¹⁰ (±5.9%)	1.00x10 ¹⁸ 1.12x10 ¹⁸ 4.25x10 ¹⁷	

Focusing Mirror (M2)

Peak Fast (E>0.1 MeV) Neutron Fluence per Full Power Year at Mirrors in Final Optics of HAPL

	Peak Fast Neutron Fluence per FPY (n/cm²)	
	SiC GIMM	AlBeMet GIMM
GIMM (M1)	4.38x10 ²⁰ (±2.1%)	3.81x10 ²⁰ (±2.1%)
Focusing Mirror (M2)	6.46x10 ¹⁷ (±4.0%)	1.00x10 ¹⁸ (±3.9%)
Turning Mirror (M3)	1.00x10 ¹⁶ (±7.3%)	1.62x10 ¹⁶ (±7.6%)

The authors gratefully acknowledge the financial support of the HAPL program at the Naval Research Laboratory.

		Flux (cm ⁻² .s ⁻¹)	
SiC GIMM	Neutrons E>0.1 MeV Total Neutrons Total Gamma	1.39x10 ¹³ (±2.1%) 1.43x10 ¹³ (±2.1%) 1.57x10 ¹² (± 5.5%)	
AlBeMet GIMM	Neutrons E>0.1 MeV Total Neutrons Total Gamma	1.21x10 ¹³ (±2.1%) 1.30x10 ¹³ (±2.1%) 1.88x10 ¹² (±4.4%)	

Peak Flux at Turning Mirror M3 Located @ 1.6-6 m from M2

Neutrons E>0.1 MeV

Neutrons E>0.1 Me

Total Neutrons

Total Gamma

Total Neutrons

Total Gamma

Neutron flux is a factor of ~1.6 higher

Total neutron flux is about two orders of

Neutron spectrum is softer with ~40% of

magnitude lower than at M2 with

smaller gamma flux reduction

neutrons @ E>0.1 MeV

with AlBeMet GIMM

Peak Flux

(cm⁻².s⁻¹)

8.44x108 (±8.2%)

7.51x108 (±8.0%)

5.14x10⁸ (±7.6%)

1.31x10⁹ (±8.8%)

1.01x10⁹ (±5.5%)

3.18x108 (±7.3%)

Peak Fluence per ful

power year (cm⁻²)

1.00x10¹⁶

2.66x10¹⁶

2.37x10¹⁶

1.62x10¹⁶

4.13x10¹⁶

3.18x10¹⁶

Turning Mirror (M3)

SiC GIMM
AIBeMet GIMM

Approach

- Used Monte Carlo code MCNPX-CGM with direct neutronics calculations in CAD model
- Continuous energy FENDL-2.1 nuclear data
- > Modeled one beam with reflecting boundaries
- Neutron traps used behind GIMM and M2
- > Two lightweight GIMM design options considered (SiC, AlBeMet)
- > 1 cm thick Sapphire M2 and M3 mirrors
- Blanket/shield included in model
- Concrete containment building housing optics

Findings and Conclusions

Fast Neutron Flux Distribution in Final Optics of HAPL

- > 3-D neutronics calculation performed to determine nuclear environment in the HAPL final optics and compare impact of possible GIMM design options
- > Neutron flux at dielectric mirrors is higher by a factor of ~1.6 with AlBeMet
- ➤ Neutron spectrum softens significantly at M3 (~40% >0.1 MeV vs. ~90% at M2)
- ➤ Peak fast (E>0.1 MeV) neutron fluence per FPY:

4.4x10²⁰ n/cm² **GIMM** $1.0 \times 10^{18} \text{ n/cm}^2$ 1.6x10¹⁶ n/cm²

SiC GIMM

- > Significant drop in nuclear environment occurs as one moves from the GIMM to dielectric focusing and turning mirrors
- > Experimental data on radiation damage to metallic and dielectric mirrors are essential for accurate lifetime prediction
- For fluence limits of 10²¹ n/cm² (GIMM) and 10¹⁹ n/cm² (dielectric), expected GIMM lifetime is ~2 FPY, expected M2 lifetime is 10 FPY, and M3 is lifetime component