

Neutronics Parameters for Preferred Chamber Configuration with Magnetic Intervention

Mohamed Sawan

Ed Marriott, Carol Aplin
UW Fusion Technology Inst.

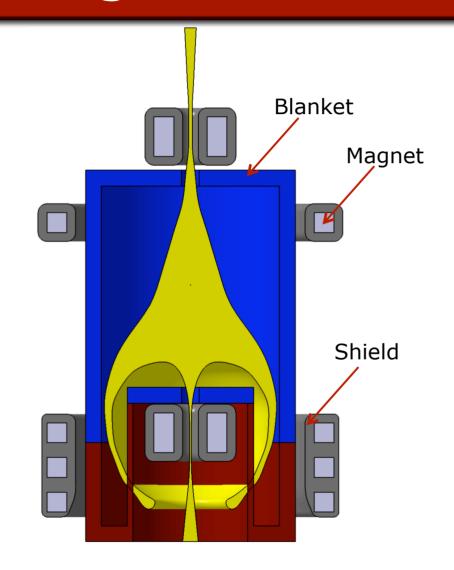
Rene Raffray

UCSD

HAPL Project Meeting
UW-Madison
October 22-23, 2008

Blanket Configuration

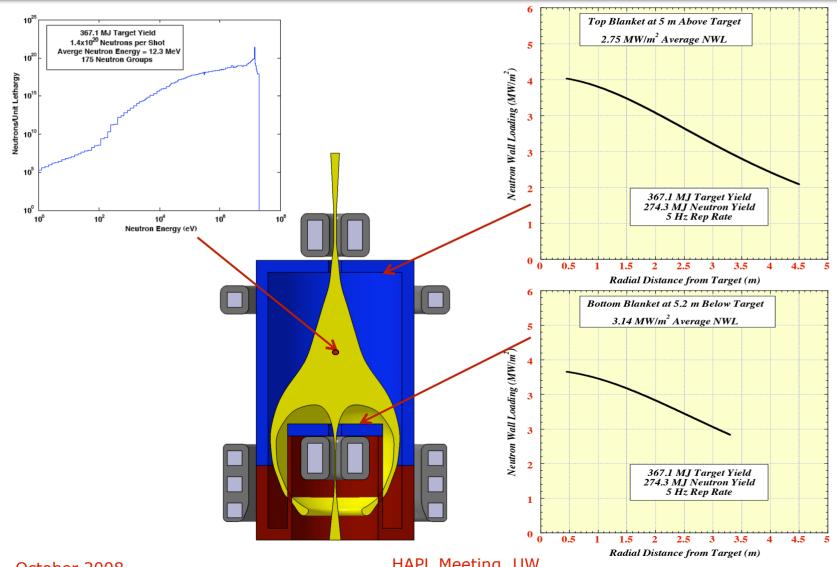
Top Blanket:


- > 5 m above target
- ▶4.5 m outer radius
- >0.45 m inner radius

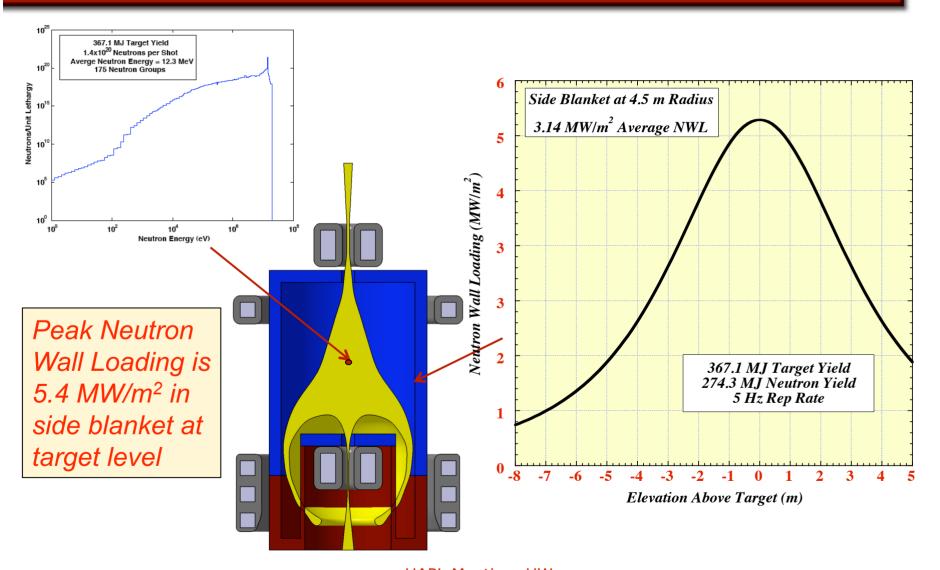
Bottom Blanket:

- >5.2 m below target
- ≥3.2 m outer radius
- >0.45 m inner radius

Side Blanket:


- ▶4.5 m radius
- >13 m height
 - 5 m above target
 - 8 m below target

Neutron Wall Loading Distribution


(Top and Bottom Blankets)

Neutron Wall Loading Distribution

(Side Blanket)

Blanket Design Options

- ➤ Two blanket design options considered with low electrical conductivity SiC_f/SiC composite structure (required for dissipating the magnetic energy resistively)
 - LiPb/SiC
 - Flibe/Be/SiC
- ➤ With Flibe a 1 cm thick Be insert is attached to back wall of FW coolant channel

Nuclear Design Requirements

- Tritium self-sufficiency Overall TBR >1.1
 - Breeding blanket coverage lost by the two point cusps is 0.4%
 - Breeding blanket coverage lost by 40 beam ports is 0.7%
 - Total breeding blanket coverage lost is negligible 1.1%
- Shield and VV are lifetime components
 Peak end-of-life radiation damage <200 dpa</p>
- Magnet is lifetime component Peak fast neutron fluence <10¹⁹ n/cm² (E>0.1 MeV) Peak insulator dose <10¹⁰ Rads
- Vacuum vessel is reweldable
 Peak end-of-life He production <1 He appm</p>

	Flibe Blanket	LiPb Blanket
Blanket Thickness (cm)	100	80
Lithium Enrichment	7.5% Li-6	10% Li-6
Magnet Shield Thickness (cm)	25	45
Vacuum Vessel Thickness (cm)	10	10

Tritium Breeding

	Flibe Blanket	LiPb Blanket
Local TBR	1.204	1.217
Top Blanket Contribution to TBR	0.151	0.153
(12.57% coverage)		
Bottom Blanket Contribution to TBR	0.086	0.087
(7.16% coverage)		
Side Blanket Contribution to TBR	0.953	0.964
(79.18% coverage)		
Overal TBR	1.190	1.204

Nuclear Heating

	Flibe Blanket	LiPb Blanket
Peak Nuclear Heating in Blanket (W/cm³)		
SiC	28	28
Be	33	
Breeder	41	80
Blanket Nuclear Energy Multiplication	1.232	1.168
Top Blanket Nuclear Heating (MW) (12.57% coverage)	212.4	201.4
Bottom Blanket Nuclear Heating (MW) (7.16% coverage)	121.0	114.8
Side Blanket Nuclear Heating (MW) (79.18% coverage)	1338.0	1268.9
Total Blanket Nuclear Heating (MW)	1671.4	1585.1

October 2008 HAPL Meeting, UW 9

Peak Damage Parameters in Blanket

	Flibe Blanket	LiPb Blanket
Peak SiC Atomic Displacements per FPY		
C Sublattice (dpa/FPY)	40	83
Si Sublattice (dpa/FPY)	42	63
Average in SiC (dpa/FPY	41	73
Peak SiC Helium Production per FPY		
C Sublattice (appm/FPY)	7,314	7,059
Si Sublattice (appm/FPY)	2,172	1,957
Average in SiC (appm/FPY)	4,743	4,508
Peak SiC Hydrogen Production per FPY		
C Sublattice (appm/FPY)	4	4
Si Sublattice (appm/FPY)	3,862	3,512
Average in SiC (appm/FPY)	1,933	1,758
Peak SiC Burnup per FPY		
C Sublattice (%/FPY)	0.32%	0.29%
Si Sublattice (%/FPY)	0.60%	0.54%
Total in SiC (%/FPY)	0.92%	0.83%

Peak Damage Parameters in Shield, Magnet, and VV

	Flibe Blanket	LiPb Blanket	Design Limit
Peak EOL Shield Damage (dpa)	0.04	3.6	200
Peak EOL Magnet Fast Neutron Fluence (n/cm²)	1.03x10 ¹⁸	2.84x10 ¹⁷	10 ¹⁹
Peak EOL magnet insulator dose (Rads)	3.39x10 ⁹	4.32x10 ⁹	10 ¹⁰
Peak EOL VV He production (appm)			
FS	0.12	0.50	1
SS	2.9	487	1

Summary and Conclusions

- ➤ All neutronics requirements can be satisfied with a Flibe/Be/ SiC or a LiPb/SiC blanket in HAPL with the present magnetic intervention configuration
- ➤ Tritium self-sufficiency can be achieved for both blankets with overall TBR >1.1
- >~5% higher blanket nuclear heating obtained with Flibe
- ➤ Peak dpa values in SiC are ~80% higher in LiPb blanket but peak gas production and burnup values are ~10% lower
- The shield is lifetime component and magnets are well shielded for both blanket design options
- The vacuum vessel is reweldable if it is made of ferritic steel
- ➤If austenitic SS VV is used, it will be difficult to meet rewelding criterion with LiPb blanket while rewelding will be possible with Flibe blanket if thickness is increased by ~10 cm