

H. H. Schmitt, G. L. Kulcinski, J. F. Santarius, J. Ding, M. J. Malecki, and M. J. Zalewski

University of Wisconsin

Presented at

SPACE 2000, The Seventh International Conference and Exposition on Engineering, Construction, Operations, and Business in Space

Albuquerque NM, 27 February – 2 March 2000

INTRODUCTION

- APOLLO SAMPLE DATA
 - UP TO 146 wppm HYDROGEN
 - SOLAR-WIND ORIGIN
- EPITHERMAL NEUTRON DATA
 - AVERAGE ~50 wppm HYDROGEN
 - − ~150 wppm IN POLAR REGIONS
 - -1500 ± 800 wppm IN DEEP POLAR CRATERS
- CLEMENTINE 750nm ALBEDO VS.
 NEUTRON DATA (DING)
 - 36 wppm NEARSIDE VS. 28 wppm FARSIDE

- PROSPECTOR TEAM
 - LARGE QUANTITIES OF POLAR ICE
 WITH SOME SOLAR-WIND HYDROGEN

- THIS PAPER
 - LARGELY CONCENTRATED SOLAR-WIND HYDROGEN

REGOLITH MATURATION

- BEGINS WITH SURFACE STABLIZATION
 - MODIFICATION BY:
 - PRIMARY IMPACTS
 - SECONDARY IMPACTS
 - SPACE RADIATION
 - INTERNAL VOLATILE MIGRATION
- SPACE RADIATION
 - COSMIC RAYS
 - SOLAR-WIND IONS

SOLAR-WIND IONS

- HYDROGEN (PROTONS)
 - − ~ 96% OF THE SOLAR-WIND
 - INITIALLY IMBEDDED IN MINERAL AND GLASS CONSTITUTENTS
 - PARTIALLY RELEASED AS PICKUP IONS
 - MICROMETEORIOD IMPACT
 - DIURNAL HEATING
 - PARTIALLY RETAINED BY BURIAL

PICKUP IONS

- RELEASED REGOLITH VOLATILES
 - IONIZED AND ENTRAINED IN SOLAR-WIND
 - LOST ENTIRELY OR RE-IMPLANTED

- DEFINITIVE MODEL OF HISTORY OF PICKUP IONS NOT YET AVAILABLE
 - APOLLO, CLEMENTINE AND PROSPECTOR
 DATA DEFINE ~STEADY-STATE IN REGOLITH

STEADY-STATE HYDROGEN CONCENTRATION

- APOLLO SAMPLES: 100 ± 50 wppm
 - MAY BE LOW DUE TO HANDLING LOSSES
- PROSPECTOR DATA FOR REGIONS WITH PERMANENT SHADOW
 - ~150 wppm (HIGH END OF APPOLLO DATA)
 - X3 THAT SEEN FOR LOWER LATITUDES
 - GRADUAL DECREASE ACROSS PERMANENT SHADOW BOUNDARIES
 - -1500 ± 800 wppm IN DEEP POLAR CRATERS

CONDITIONS AT THE POLES

- PERMANENT SHADOW ~ -230°C
- OUTSIDE PERMANENT SHADOW
 - AVERAGE TEMPERATURE INCREASES WITH DECREASING LATITUDE
- MAXIMUM CONTRAST BETWEEN EQUATOR AND PERMANENT SHADOW
 - ~350°C

HYDROGEN RETENTION

- PLAGIOCLASE FELDSPAR
 - KNOWN TO ASSUME A CATION POSITION IN FELDSPAR -SODIUM SUBSTITUTE?
 - NOTE TRANSIENT SODIUM ATMOSPHERE
 - SUGGESTED BY CONCENTRATION NEAR LARGE, YOUNG HIGHLAND CRATERS
 - SUGGESTED BY CONCENTRATION IN KREEP-RICH ANNULUS AROUND IMBRIUM
- ILMENITE
 - CLEMENTINE-PROSPECTOR COMPARISON BY CO-AUTHOR DING

AVERAGE TRAPPED LUNAR HYDROGEN IS HIGHEST IN REGIONS HAVING THE LOWEST AVERAGE ALBEDO VALUES.

- VARIABLES AFFECTING ADDITIONS AND LOSSES OF HYDROGEN NEAR THE POLES
 - SOLAR-WIND FLUX VS. LATITUDE AND LONGITUDE
 - TILT OF MOON'S AXIS RELATIVE TO ECLIPTIC
 - NON-ECLIPTIC COMPONENT OF SOLAR-WIND
 - DIURNAL TEMPERATURE VARIATION VS. LATITUDE AND LONGITUDE
 - PICKUP ION REDEPOSTION RATES VS. LATITUDE AND LONGITUDE
 - ABUNDANCES OF RETENTIVE MINERALS
 - MOON'S INTERACTION WITH THE MAGNETOSPHERE
 - FLUX OF MICRO-METEORITES IMPACTING THE MOON

EROSION OF WATER ICE BY MICROMETEROIDS

- REGOLITH TURNOVER (GARDENING)
 - FEW CM EVERY 10 MILLION YEARS
- BLANKET OF COMETARY ICE WOULD ERODE AT COMPARABLE RATE
 - SPUTTERING DUE TO SOLAR-WIND WOULD ADD TO EROSION
 - SOME PROTECTION POSSIBLE IN DEEP CRATERS OR BY FORTUITOUS EJECTA

SCIENCE CONCLUSIONS

- THE HYDROGEN SIGNAL IN POLAR REGIONS IS LARGELY A CONCENTRATION OF SOLAR-WIND HYDROGEN BY COLDTRAPPING
 - WATER ICE MAY BE PRESENT IN DEEP CRATERS WHERE PARTIALLY PROTECTED FROM EROSION
 - WATER ICE MAY BE LOCALLY MIXED WITH SOLAR WIND HYDROGEN WHERE INITIALLY PROTECTED FROM EROSION BY IMPACT EJECTA

HELIUM-3 CONCLUSIONS

- CONCENTRATION OF SOLAR-WIND HYDROGEN IN POLAR REGIONS IMPLIES THE SAME FOR HELIUM-3
 - MORE INFORMATION ON ACUTAL
 GRADE IS REQUIRED BEFORE THE
 POLES BECOME MORE INTERESTING
 THAN TI-RICH MARE WHERE HELIUM-3
 GRADE IS WELL-DEFINED BY APOLLO
 AND CLEMENTINE DATA

LUNAR BASE CONCLUSIONS

- WATER CAN BE PRODUCED FROM THE REGOLITH ANYWHERE ON THE MOON THAT OPERATIONS REQUIRE
 - SPECIFIC LUNAR BASE TRADE STUDIES
 MUST DEMONSTRATE THAT WATER
 PRODUCED AT THE POLES, AND
 TRANSPORTED TO THE BASE, IS LESS
 COSTLY THAN LOCAL PRODUCTION