Objectives:
- Commission a new IEC device
- Investigate cathode and anode geometries
- Increase D-3He fusion rates
- Produce radiopharmaceuticals in an IEC device

New Inertial Electrostatic Confinement Device

3HeCTRE: 3Helium Cylindrical Transmutation Reactor

High Voltage Feed-Through
- Tested to -150 kV

Vacuum System
- 250 liters/sec turbo-molecular pump
- Base Pressure 2x10^{-4} Pa (1.5x10^{-6} Torr)

Ion Source
- Tungsten light bulb filaments
- 4 filaments (maximum of 6)
- 60° apart around perimeter
- Adjustable along Z-axis, currently aligned with the chamber midpoint

Cathode
- 44.6 cm from center of chamber
- 1200 mm2 x 700 µm silicon detector

Milestones:
- Began construction July 2005
- First D-D reactions April 2006
- Best neutron rate 2.7×10^7 neutrons/sec at 145 kV, 35 mA, and 0.3 Pa (2 mTorr)
- First D-3He reactions Oct. 18, 2006
- Best proton rate 2.0×10^7 protons/sec at 130 kV, 30 mA and 0.3 Pa (2 mTorr)

Fusion Rate Comparison: Anode and Cathode Geometry

Application:
PET Isotope Production

Predicted 11C Activity at Different Fusion Rates
MCNPX 2.5.0 Simulation