Abstract: A magnetic deflection energy analyzer and Faraday trap diagnostic have been used to make measurements of divergent deuterium anion flow in the inertial electrostatic confinement experiment at the University of Wisconsin—Madison (UW–IEC) [J. F. Santarius, G. L. Kulcinski, R. P. Ashley, D. R. Boris, B. B. Cipiti, S. K. Murali, G. R. Piefer, R. F. Radel, I. E. Radel, and A. L. Wehmeyer, Fusion Sci. Technol. 47, 1238 (2005)]. This device confines high energy light ions in a spherically symmetric, electrostatic potential well. Deuterium anion current densities as high as 8.5 µA/cm² have been measured at the wall of the UW-IEC device, 40 cm from the surface of the device cathode with a detector assembly of admittance area 0.7 cm². Energy spectra obtained using a magnetic deflection energy analyzer diagnostic indicate the presence of D₂⁺ and D⁻ ions produced through thermal electron attachment near the device cathode, as well as D⁻ ions produced via charge transfer processes between the anode and cathode of the device.

Introduction

Hydrogen anions are a much studied subject that holds important implications for ion sources involved in high energy accelerators, ion beam surface treatments, as well as neutral beam injection schemes for fusion plasmas. There are two processes of hydrogen anion formation that are particularly relevant for IEC devices, thermal electron attachment and charge transfer.

D₁⁺ + e⁻ → D₁⁻ (1) Thermal electron attachment

where the meta-stable lifetime τ = ~1 fs to ~1 ms depending on rotational state of the molecular anion.

D₁⁺ + D₂ → D²⁺ + D₂ (2)

D₁⁻ + D₂ → D²⁻ + D₂ (3)

Charge Transfer process relevant at energies > few keV

D₂⁺ + D⁻ → D⁺ + D⁻ (4)

D₁⁺ + D⁻ → D⁺ + D⁻ (5)

D⁺ + D⁻ → D²⁺ + D₂

D⁻ + D⁻ → D₂⁻ + D

D⁺ + D⁻ → D⁺ + D⁻

D²⁺ + D⁻ → D₂⁺ + D⁻

D⁰ + D⁻ → D⁺ + D⁻

D⁻ + D⁻ → D₂⁻ + D

D⁺ + D⁻ → D⁺ + D⁻

Inertial Electrostatic Confinement Schematic

Figure 1: IEC Schematic w/ positive ion flow

Figure 2: IEC Schematic w/ negative ion flow

•By placing a smaller spherical cathode grid inside a grounded anode grid, ions produced outside the anode can be accelerated to fusion relevant energies. (See Figure 1). This confinement approach produces a non-Maxwellian plasma with increased ion density toward the center of the geometrical field. The IEC concept is of particular interest in the arena of non-electric applications for fusion.

•In this geometry the likelihood of producing negative ions through charge transfer is qualitatively significant since the mean free path of positive ions can be much larger than the device dimensions. Negative ions will be divergently accelerated into the walls of the vacuum vessel.

Diagnostics for Negative Ion Detection

- Faraday Trap

The Faraday trap diagnostic operates by collecting negative ions on a 0.7 cm² aluminum current collection plate.

- Magnetic Deflection Energy Analyzer

Deuterium anions leaving the UW-IEC are collimated by a pair of 2 mm irises

This beam of deuterium anions is then passed through a variable electromagnet which causes the beam to deflect in a direction perpendicular to both the velocity of the beam and the applied magnetic field.

The magnetic field will separate the anion energy spectrum by the charge to mass ratio of the incident anions.

Once the anions have been deflected by the electromagnet they will continue towards the detector until they encounter a smaller lead iris with a diameter of 100 µm. This iris samples a narrow portion of the resulting fan-shaped beam of anions, consequently isolating a narrow band of the velocity spectrum of deuterium anions emanating from the IEC device.

Experimental Results

- Faraday Trap

Deuterium anion current densities as high as 8.5 µA/cm² have been measured at the wall of the UW-IEC device, 40 cm from the surface of the device cathode with the Faraday trap.

Pressure scans showed a peak in anion current at 2 mTorr of background pressure (Figure 6).

Measurements taken at varying cathode voltage showed the current density to be non-linearly dependent on cathode voltage (Figure 7).

- Magnetic Deflection Energy Analyzer

A sample energy spectrum from the magnetic deflection energy analyzer is shown in Figure 8. The energy spectrum can be deconvolved into 5 separate Gaussian peaks indicating a variety of phenomena at work resulting in anion formation.

Figure 8: Sample energy spectrum shows three peaks from charge transfer reactions and two resulting from thermal electron attachment at the cathode.

The evolution of the anion energy spectra with pressure and voltage is shown in Figure 9.

Figure 9: (a) Evolution of energy spectra with cathode voltage (30 mA cathode current, 2 mTorr) (b) Evolution of energy spectra with background pressure (90 kV cathode voltage, 30 mTorr cathode current).

Conclusion

Using a magnetic deflection energy analyzer, deuterium anions resultant from both charge transfer and thermal electron attachment processes have been measured in the UW IEC device. In addition, long lived molecular deuterium anions have been measured with metastable lifetimes of at least 0.5 µs. These molecular anions were detected with the full cathode energy, indicating that they originated near the hot cathode at the center of the IEC device. A Faraday trap diagnostic was used to corroborate the data from the magnetic deflection energy analyzer and to make measurements of deuterium anion current at two positions around the UW IEC device. This diagnostic indicated that the deuterium anion current was highly variable with angular position, indicating a strong dependence on device geometry. In addition anion current densities of 8.5 µA/cm² were measured with the Faraday trap. Further work is recommended to more definitively map the angular dependence of deuterium anion intensity, and to determine the extent to which IEC devices can produce molecular hydrogenic anions.