Mechanical Analysis of First Wall Tubes for the LIBRA Conceptual Reactor

R. Engelstad and E. Lovell

December 1983

UWFDM-561

Mechanical Analysis of First Wall Tubes for the
LIBRA Conceptual Reactor

R. Engelstad and E. Lovell

Fusion Technology Institute
University of Wisconsin
1500 Engineering Drive
Madison, WI 53706

http://fti.neep.wisc.edu

December 1983

MECHANICAL ANALYSIS OF FIRST WALL TUBES FOR THE LIBRA CONCEPTUAL REACTOR

R.L. Engelstad and E.G. Lovell
Fusion Engineering Program, Nuclear Engineering Department
University of Wisconsin, Madison, WI 53706

The mechanical design of a first wall tube bank system for ICF reactor cavities is strongly influenced by parametric results of dynamic response analyses. Under sequential lateral pressure pulses, transient startup motion of tubes is followed by steady state oscillations of a frequency corresponding to the reactor repetition rate. It is shown that the steady state amplitude and the corresponding alternating amplitude are sensitive to the repetition rate, tensile preload and internal liquid metal flow velocity.

Introduction

LIBRA represents a conceptual ICF reactor design based upon a light ion driver system. Key parameters are identified in Table I and a schematic cross sectional diagram of the reaction chamber is shown in Fig. 1. An annular bank of vertical tubes (IMPORTs [1]) encircle the cavity. IMPORTs are fabricated from continuous silicon carbide fiber, braided to produce a tube with a porous, pliable wall. Liquid Li<PMB>83₃, used as a coolant and breeding material, flows axially within the IMPORT and through the tube wall to develop a protective outer film. This concept is shown in Fig. 2. The first two rows of IMPORTs are subjected to repetitive mechanical shock loading during operation. The dynamic response has been analyzed and will be described in the work which follows.

Mechanical Modeling

IMPORTs are modeled as being completely flexible and elastically supported at the top and bottom ends. Such spring loading allows for control of axial tension in each unit. Viscous damping is included in the model and expressed as a percentage of critical damping. The effects of fluid velocity are also included in the

![Fig. 1. Schematic of LIBRA Reactor Chamber.](image)

Table I. Preliminary LIBRA Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cavity shape</td>
<td>cylindrical</td>
</tr>
<tr>
<td>Cavity radius (m)</td>
<td>5</td>
</tr>
<tr>
<td>Cavity gas (torr)</td>
<td>Ar(10) + Li(0.002)</td>
</tr>
<tr>
<td>First wall</td>
<td>SIC IMPORTs</td>
</tr>
<tr>
<td>Breeder/coolant</td>
<td>Li<PMB>83</td>
</tr>
<tr>
<td>Rep. rate (Hz)</td>
<td>1.5</td>
</tr>
<tr>
<td>Ion type (MeV)</td>
<td>Li(21)</td>
</tr>
<tr>
<td>Driver efficiency (%)</td>
<td>20</td>
</tr>
<tr>
<td>Total driver energy (MJ)</td>
<td>4</td>
</tr>
<tr>
<td>Target gain</td>
<td>80</td>
</tr>
<tr>
<td>Fusion yield (MJ)</td>
<td>320</td>
</tr>
<tr>
<td>Fusion power (MWt)</td>
<td>490</td>
</tr>
</tbody>
</table>

equations of motion. However, the secondary effects of flow through the tube wall are not considered at this time.

The dynamic pressures are obtained from the simulation code, FIRE [2]. The pulse shown in Fig. 3 is used for all calculations and is analytically modeled as a combination of a linear ramp and exponential decay, uniformly distributed on one side of an IMPORT. A computer code has been developed to determine the dynamic mechanical response, using the pressure pulse sequentially applied at the repetition rate of the reactor.

![Fig. 2. Sectioned IMPORT Unit.](image)

This work was supported, in part, by Kernforschungszentrum Karlsruhe GmbH, Karlsruhe, FRG.
Mechanical Response

All numerical results are based upon an IMPORT with a length, diameter and wall thickness of 10 m, 3 cm and 1 mm, respectively. For such components, the response depends upon the natural modes and corresponding frequencies. As shown in Fig. 4, natural frequencies are moderately increased by axial preload and reduced as fluid velocity increases, with the value producing a frequency of zero referred to as the critical velocity. The response will be most strongly influenced by the lower modes and frequencies, such as those shown corresponding to one and three half waves, respectively (Ω₁ and Ω₃).

The reaction chamber is expected to operate at a repetition rate of 1.5 Hz but slight variations from this are possible. Typical midpoint displacement histories are shown in Figs. 5 and 6 for 1.5 Hz. A change in fluid velocity from zero to 6 m/s (63% of the critical) results in a steady state mean displacement
which is larger but with a reduced alternating amplitude after motion has stabilized. Similar results are shown in Figs. 7 and 8 for a reduced repetition rate of 1.0 Hz. However, the alternating amplitudes for fully developed motion in these two cases is large and would degrade the fatigue life of the components. In Figs. 9 and 10, the steady state mean amplitude at 1.5 and 1.0 Hz is shown as a function of the critical velocity ratio for various preloads. Clearly the mean value increases with increasing velocity but can be controlled.

Fig. 7. IMPORT Midpoint Displacement versus Time.

Fig. 8. IMPORT Midpoint Displacement versus Time.

Fig. 9. Steady State Mean Displacement versus Fluid Velocity Ratio.

Fig. 10. Steady State Mean Displacement versus Fluid Velocity Ratio.
Fig. 11. Steady State Alternating Displacement Versus Fluid Velocity Ratio.

at lower velocities with a larger preload force. More pronounced response is shown for the alternating displacement as shown in Figs. 11 and 12. In general this component is rather insensitive to initial increases in liquid velocity but drops quickly for larger velocities and subsequently oscillates moderately as the upper limit is approached. It can be seen that the alternating displacement is generally lower for the 1.5 Hz case compared with 1.0 Hz.

Conclusions

It has been shown that the dynamic mechanical response of INPORTs comprising the first wall of the LIBRA ICF conceptual reactor is influenced significantly by pretension loads, the repetition rate of the driver system and the flow velocity of lithium/lead within the tubes. In particular, as the repetition rate is raised, it was found that the steady-state mean displacement amplitude increased but the associated alternating displacement decreased. In addition, if the liquid metal velocity is increased, the steady-state mean displacement grows but the alternating amplitude drops. Such results will have a direct bearing on the determination of the fatigue life of INPORTs [3]. In general, the parametric mechanical response data will be correlated with results from nonmechanical analyses to further develop a more refined design of the LIBRA reaction chamber.

References

