Tokamak Scaling in Terms of Critical Fields and Plasma Stability

H.K. Forsen, G.A. Emmert, and T. Yang

February 1972

UWFDM-5
Tokamak Scaling in Terms of Critical Fields and Plasma Stability

H.K. Forsen, G.A. Emmert, and T. Yang

Fusion Technology Institute
University of Wisconsin
1500 Engineering Drive
Madison, WI 53706

http://fti.neep.wisc.edu

February 1972

UWFDM-5
TOKAMAK SCALING IN TERMS OF CRITICAL FIELDS AND PLASMA STABILITY

by

H. K. Forsen, G. A. Emmert and T. Yang

February 1972

University of Wisconsin

These FOM's are preliminary and informal and as such may contain errors not yet eliminated. They are for private circulation only and are not to be further transmitted without consent of the authors and major professor.
TOKAMAK SCALING IN TERMS OF CRITICAL FIELDS AND PLASMA STABILITY

H. K. Forsen, G. A. Emmert and T. Yang
Department of Nuclear Engineering
University of Wisconsin

Golovin, Dnestrovsky and Kostomarov¹ have reviewed tokamak scaling from the point of view of reactor power, wall loading and magnetic field limitations. It is also instructive to consider scaling in terms of the plasma stability factor (q), blanket and shield thickness (T_B) and β_p where $\beta_p = 2 \mu n C_k(T_e + T_i)/B_p^2$. In the present analysis we seek to determine the plasma radius (a), aspect ratio ($A = R/a$), and maximum field at the toroidal field superconductor (B_m) for a reactor operating with uniform plasma density ($n = 1.10^{14}/\text{cm}^3$) and temperature ($T_e = T_i = 15 \text{ keV}$). To carry out this simple analysis we use the definition $q = aB_t/RB_p$ where R is the major radius and the subscript refers to the toroidal field (t) or poloidal field (p) at R.

Using $y = a/r_w$, where r_w is the radius to the vacuum wall, we write

$$B_m = \frac{RB_t}{R - T_B - r_w}$$ \hspace{1cm} (1)

Coupling this with the definition of q and applying two different stability limit conditions on β_p such that $^2 \beta_p \leq A$ or $\beta_p \leq A^{1/2}$, we find
\[
B_m = \frac{q(4\mu_0 T_i A)^{1/2}}{1 - \frac{\mu_0}{B/A^2} - 1/y} \quad \text{or} \quad \frac{q(4\mu_0 T_i A^{3/2})^{1/2}}{1 - \frac{\mu_0}{B/A^2} - 1/y}.
\]

Figure 1 is a plot of \(B_m\) at \(q = 2.0, y = 0.8\) for different \(T_B\) and \(A\) which shows that no solutions exist for Eq. (3) and NbTi superconductors having critical fields around 100 kG. Solutions do exist for Nb\(_3\)Sn, which essentially has unlimited critical fields but is very expensive and stress loading may limit its use to fields near that of NbTi.

Assuming cost and stress considerations limit \(B_m\) to 100 kG, we seek solutions to Eq. (2) and (3) for various values of the blanket thickness and stability factor. These are plotted in Fig. 2 to give the plasma radius as a function of the aspect ratio for the conditions shown. Solutions do not exist for small values of \(A\) since the major radius must be larger than the blanket thickness plus vacuum wall radius and allow room for superconductor windings, structure and insulation as well as an iron excitation core. The curves indicate that, for a reasonable size reactor, we need \(\beta_p \sim A\) and \(q \sim 1.5\) or less; otherwise the reactor size and power output becomes excessive. For comparison purposes, the star in Fig. 2 represents a reactor power level of 1500 MW(th) and the power increases as \(n^2 a^3 A\). On the other hand \(\beta_p\) is proportional to \(n\) and the magnetic field needed for confinement is proportional to \(n^{1/2}\).
The above analysis neglects the α pressure. It should be noted that, at the temperature used here, \(p_\alpha = 120 f_b p \) where \(f_b \) is the fractional burnup, and \(p_\alpha \) and \(p \) are the α and plasma pressures, respectively. At 1% burnup, \(p_\alpha = p \), so the \(p_\alpha \) is doubled. Since \(p_\alpha \) is limited by equilibrium and stability considerations, the α pressure can seriously reduce the maximum ion pressure that can be confined. This also points to the need to make the upper limit on \(p_\alpha \) as large as possible.

References

* This work was partially supported by grants from Northern States Power, The Wisconsin Electric Utilities Research Foundation and the U.S. Atomic Energy Commission.
$n = 1 \cdot 10^{14} / \text{cm}^3$

$T_0 = T_i = 15 \text{ keV}$

$B_{\text{MAX}} = 100 \text{ kG}$

$\gamma = 0.8$

$\beta_p = A$

$\beta_p = A^{1/2}$