Advanced Fusion Fuel Cycles and Fusion Reaction Kinetics - Preliminary Proposal

G.W. Shuy

December 1979

UWFDM-335
Advanced Fusion Fuel Cycles and Fusion Reaction Kinetics - Preliminary Proposal

G.W. Shuy

Fusion Technology Institute
University of Wisconsin
1500 Engineering Drive
Madison, WI 53706

http://fti.neep.wisc.edu

December 1979
Advanced Fusion Fuel Cycles

and

Fusion Reaction Kinetics

Geoffrey W. Shuy

Preliminary Proposal

Nuclear Engineering Department

University of Wisconsin-Madison

Dec. 1979
Advanced Fusion Fuel Cycles
and
Fusion Reaction Kinetics

Table of Contents

I. Introduction (1)

II. Charged Particle Cross Section Requirements for Advanced Fusion Fuel Cycle Analysis
 1. Required Nuclear Data (16)
 2. Status of Nuclear Data for Advanced Fusion Fuel Cycle Analysis (20)

III. Theory
 1. Slowing Down Theory (42)
 2. Reactions While Slowing Down (46)
 3. The Reactivity of a Propagating Reaction (48)
 4. Energy Balance (54)
 5. Doppler Broadening and Energy Distribution from Nuclear Reactions (55)

IV. Advanced Fuel Cycle Burn Kinetics Code
 1. Overview of the State-of-the-Art (62)
 2. Outline of the Proposed Advanced Fuel Cycle Burn Kinetics Code (66)

V. Preliminary Results of the Advanced Fusion Fuel Cycle Analysis and Proposed Studies (79)
I. Introduction

A large number of light elements will fuse if the temperature of the mixture is sufficiently high. The potential fusion fuel cycles can be classified as deuterium based, proton based and helium 3-based. The deuterium based fuel cycles include d-t, d-d, d-\(^{3}\)He and d-\(^{6}\)Li. The proton based fuel cycles include p-\(^{11}\)B and p-\(^{6}\)Li.

Fusion devices utilizing the d-t-Li cycle will certainly be the first to demonstrate energy breakeven and also very likely will be the first cycle for commercial fusion reactors. Nevertheless, fusion reactors with tritium fuel should be viewed as an intermediate step in fusion power development. The ultimate goal is to achieve a reactor based on either hydrogen or deuterium to insure both an inexhaustible fuel supply and systems with minimum radioactivity. To preserve this potential, it is essential to maintain efforts to develop advanced fuel cycle fusion power based on d-d, d-\(^{3}\)He, d-\(^{6}\)Li or proton based cycles such as p-\(^{11}\)B and p-\(^{6}\)Li. Minimizing the plasma deuterium content is a key to a minimum neutron producing reactor.

The potential advantages of a proton based fusion reactor are summarized in Table 1. First, both fuels in p-\(^{11}\)B or p-\(^{6}\)Li are abundant. Secondly, there is little gaseous radioactivity and no need to breed tritium. The elimination of tritium breeding and fueling minimizes problems of tritium management and eliminates in many cases the need for an intermediate loop in the power cycle. Thirdly, the neutron level is so low that bulk radiation damage to materials is not an issue. This impacts favorably
Table 1

Potential Advantages of Proton-Based Fusion Reactors

1. Fuels are essentially inexhaustible.
2. No gaseous radioactivity.
3. No fuel breeding requirement.
4. Simple blanket design - blanket is now just a first wall.
5. No radiation damage to structural materials.
6. Safety aspects more similar to coal plants than to nuclear power.
7. Improved system maintainability and thus, potentially, improved reliability and availability.
8. Very low levels of induced radioactivity.
9. Potentially low environmental impact on air pollution, mining, and long term solid waste disposal.
10. Potential for good system economics.
 A. Balance of plant costs should be similar to coal plant. Nuclear oriented subsystems are minimized.
 B. Fuel costs will be less than for nuclear.
 C. Fusion island costs can be greater than for nuclear.
 D. No intermediate loop required for safety.
on reactor design by permitting improved maintainability, availability
and reliability. Some neutron induced radioactivity will result from
deuteron reactions but this depends on branching ratios. Together
with the absence of gaseous radioactivity, this low radioactivity
and tritium level provides particular environmental advantages that
will affect costs, licensing and siting. Fourthly, although the plasma
power density is likely to be lower than in a d-t reactor with the same
β value, the size limitations imposed by the neutron wall loading in
d-t systems do not in any case permit one to take full advantage of very
high β. With a minimum neutron advanced fuel cycle, magnets can be closer
to the reaction chamber to offset the need for somewhat higher fields.
Since the energy is released primarily as charged particles and electro-
magnetic radiation, the blanket is no more than the first wall itself.
Fifthly, the bremsstrahlung radiation associated with a burning temperature
of 200-300 keV is characterized by attenuation lengths on the order of .1-1.
mm for either a low-Z or medium Z material such as stainless steel. Since the first
wall thickness is also on this order, the heat load has been converted
to a volumetric heat load. By doping the first wall coolant with high
Z material, the heat transfer problem is then simplified. In short,
a proton based fusion reactor would be the fusion analog of a coal fired
boiler. Cost advantages can be gained by eliminating systems such
as intermediate heat exchangers, tritium extraction, tritium cleanup,
radioactive waste control and remote handling. Potential environmental
advantages can minimize licensing and siting issues. These cost savings
can be used to a degree to offset disadvantages such as lower plasma power
density.
The proper determination of the potential of an advanced fuel cycle requires a study of fusion reaction kinetics, including subtle effects like fast fusion, nuclear elastic and inelastic scattering, Doppler broadening of the energy distribution of reaction products, and the fraction of slowing down energy given separately to the ions and electrons.

There are two new effects in the analysis of advanced fuel cycles which have been investigated and found to increase the reactivity of the cycles, to alter energy balance calculations and to affect predicted Q values or ignition conditions. The first effect is the propagation in the cycles such as p-6Li. 3He, the energetic p+6Li reaction product, reacts with 6Li and produces an energetic proton before slowing down; these protons can undergo fast fusion again and propagate the reaction further. The second effect is the enhanced fast fusion reactivity due to nuclear elastic scattering. Nuclear elastic scattering of the energetic fusion products with the background fuel ions produces additional energetic particles which can undergo fast fusion and further propagate the reaction.

The proton-deuterium nuclear elastic scattering cross section is shown in Fig. 1 as a function of proton energy. The coulomb scattering cross section has been subtracted prior to plotting the result. The nuclear elastic scattering cross section is typically 1 barn or greater when the incident energy is in the range 1 to 15 MeV.
Fig. 1 The proton-deuterium nuclear elastic scattering cross section.
The average energy transfer per collision is large. For example, counting only collisions which transfer 1 MeV or more, a 3 MeV proton in a deuterium plasma with a 75 keV ion temperature is found to transfer ~ 30% of its energy to the energetic deuterons when the electron temperature is 60 keV. This fraction increases to ~ 50% when T_e is 100 keV. The fast fuel ions produced from the process undergo fusion while slowing down, thereby enhancing the reactivity and the propagation of the reaction. Figs. 2 and 3 show the fraction of energy transferred from fast alphas and fast protons to produce energetic deuterons with an energy greater than 1 MeV. The effect for alphas at 3 to 4 MeV is smaller than for protons at either 3 MeV or 14.5 MeV because of the larger coulomb cross section for alphas.

The catalyzed d-d fuel cycle can be used to elaborate on the role of nuclear elastic scattering and propagation enhancement. The major reactions for this cycle are:

\[
\begin{align*}
 d + d &\rightarrow n (2.45 \text{ MeV}) + \frac{3}{2} \text{He} (.87 \text{ MeV}) \quad (1) \\
 &\rightarrow \bar{p} (3.01 \text{ MeV}) + \bar{\Xi} (1. \text{ MeV}) \quad (2) \\
 d + t &\rightarrow n (14.06 \text{ MeV}) + \bar{\alpha} (3.5 \text{ MeV}) \quad (3) \\
 d + \frac{3}{2} \text{He} &\rightarrow \frac{1}{2} \bar{p} (14.68 \text{ MeV}) + \bar{\alpha} (3.67 \text{ MeV}) \quad (4)
\end{align*}
\]

The overbars denotes fast charged particles. Nuclear elastic events such as
3 and 4 MeV α.
Pure D Plasma.
$T_i = 75$ keV

Fig. 2
3 MeV Proton in Pure D Plasma.
$T_i = 75$ keV
\[
\bar{p} + d \rightarrow p + \bar{d} \tag{5}
\]
\[
\bar{\alpha} + d \rightarrow \alpha + \bar{d} \tag{6}
\]

promote fast deuterons from the background Maxwellian distribution. A few of the propagating sequences in this cycle are:

\[
\begin{align*}
\{ & d + d + \bar{p} + \bar{\alpha} \\
& \bar{p} + d + \bar{d} + p \\
& \bar{\alpha} + d + \bar{d} + \bar{\alpha} \\
& \bar{d} + d + \bar{\alpha} + \bar{p} \\
& \vdots \\
& d + d + \bar{\alpha} + n \\
& \bar{\alpha} + d + \bar{d} + \alpha \\
& \bar{d} + d + \bar{\alpha} + \bar{p} \\
& \vdots \\
\}
\end{align*}
\tag{7}
\]

\[
\begin{align*}
\{ & d + d + \bar{\alpha} + n \\
& \bar{\alpha} + d + \bar{d} + \alpha \\
& \bar{d} + d + \bar{\alpha} + \bar{p} \\
& \vdots \\
\}
\end{align*}
\tag{9}
\]

\[
\begin{align*}
\{ & d + d + \bar{\alpha} + n \\
& \bar{\alpha} + d + \bar{d} + \alpha \\
& \bar{d} + d + \bar{\alpha} + \bar{p} \\
& \vdots \\
\}
\end{align*}
\tag{10}
\]

As an example, the propagating sequence indicated in set (7) produces fast protons. The fast proton promotes the deuterons out of the thermal bath; the energetic deuteron then reacts before slowing down, producing a fast proton, and so on.

The inclusion of these effects increases the reactivity of the catalyzed d-d cycle at \(T_i = 75 \) keV by 25\% when \(T_e \) is 50 keV and by 75\% when \(T_e \) is 100 keV. The results are shown in Fig. 4. These increases are measured relative to a standard calculation in which nuclear elastic scattering and propagating reactions are neglected.
FUEL CYCLE: D-D

$T_i = 75$ keV

Fig. 4
A nuclear knock-on event also alters the fraction of energy given to electrons and ions by energetic fusion products. The energy transferred to electrons by various fast particles (a 4 MeV alpha, a 3 MeV proton, and a 14.5 MeV proton) is shown in Figs. 5, 6 and 7 as a function of electron temperature. The dashed curve in each figure is the fraction of the initial energy received by electrons when only the coulomb interaction is assumed. The dash-dot curves in each figure give the analogous result when both coulomb and nuclear elastic scattering are included. Finally, the solid curve properly includes the effect of fast ion production by nuclear scattering and the subsequent slowing down of those ions with background ions and electrons. The background plasma in all cases is composed of electrons and deuterium ions. The ion temperature is fixed at 75 keV. While the inclusion of the nuclear knock-on effect results in small changes for the 4 MeV alpha particle, a substantial effect is seen for both the 3 MeV and 14.5 MeV protons. The effect becomes more important as the electron temperature is increased. Accounting for both nuclear elastic scattering and subsequent slowing down of knock-on ions, a 14.5 MeV proton in a 75 keV ion temperature deuterium plasma will transfer 79% of its energy to 50 keV electrons compared to 93% when only coulomb scattering is assumed. At an electron temperature of 100 keV, the percentage of energy transferred to the electrons decreases to 51% compared to 85% with coulomb interactions only. The effect is clearly important in a plasma energy balance calculation. Overall, the net result is that lower $n\tau_E$ values are required to meet either the Lawson or ignition condition for the catalyzed d-d cycle.
4 MeV α in Pure D Plasma
\(T_i = 75 \text{ keV} \)

Fig. 5

- **\(U_{\alpha e} \): Energy Transferred to Electrons (%)**
- **Electron Temperature (keV)**

- Coulomb + Nuclear Elastic Scattering (\(U_{\alpha e} \))
- Coulomb Scattering Only
- Coulomb, Nuclear Elastic, and Fast D Slowing Down
Figure 6

3 MeV Proton In Pure D Plasma
\(T_i = 75 \text{ keV} \)

U_{pe} Energy Transferred to Electrons (%)

- **Coulomb Scattering Only**
- **Coulomb + Nuclear Elastic Scattering (U_{pe})**
- **Coulomb, Nuclear Elastic, and Fast D Slowing Down**

Electron Temperature (keV)
U_{pe}, ENERGY TRANSFERRED TO ELECTRONS (%)

14.5 MeV Proton in Pure D Plasma
$T_i = 75$ keV

- Coulomb Scattering Only
- Coulomb + Nuclear Elastic Scattering (U_{pe})
- Coulomb, Nuclear Elastic, and Fast D Slowing Down

ELECTRON TEMPERATURE (keV)

Fig. 7
11. Charged Particle Cross Section Requirements for Advanced Fusion Fuel Cycle Analysis

In order to properly determine the potential of each fusion fuel cycle, the basic nuclear data for nuclei with atomic mass numbers less than 12 must be known accurately.

1. Required Nuclear Data

The nuclear data required to analyze advanced fuels include fusion reaction cross sections, reaction rate parameters such as $<\sigma v>$, reaction probabilities for fast fusion products to react with various elements in the background plasma, and nuclear elastic and inelastic cross sections to determine the energy transfer from the energetic fusion products to the background ions and electrons. The reaction rate, R, for two reacting species, a and b, is:

$$R = \int d\vec{v}_a \int d\vec{v}_b \ f_a(\vec{v}_a) \ f_b(\vec{v}_b) \ \sigma(u) \ u$$ \hspace{1cm} (11)$$

where R is the number of reactions per unit volume per unit time, f_a and f_b are the distribution functions, σ is the reaction cross section, and u is the relative velocity, $u = |\vec{v}_a - \vec{v}_b|$. It is convenient to write R as $n_an_b<\sigma v>$, where the density of species a and b (n_a and n_b) are found from

$$n_i = \int f_i(\vec{v}_i) \ d\vec{v}_i \hspace{1cm} (i=a, b). \hspace{1cm} (12)$$
The reaction rate parameter, $\langle \sigma v \rangle$, depends on the form of the normalized distribution functions $\hat{f}_i(\tilde{v}_i) = \frac{1}{n_i} f_i(\tilde{v}_i)$:

$$\langle \sigma v \rangle = \int d\tilde{v}_a \int d\tilde{v}_b \hat{f}_a(\tilde{v}_a) \hat{f}_b(\tilde{v}_b) \sigma(u) u .$$ \hspace{1cm} (13)

If $\hat{f}_i(\tilde{v}_i)$ is the Maxwellian distribution,

$$\hat{f}_i(\tilde{v}_i) = \left(\frac{m_i}{2\pi kT} \right)^{3/2} \exp \left(-\frac{m_i \tilde{v}_i^2}{2kT} \right),$$ \hspace{1cm} (14)

the integral in Eqn. (13) can be expressed as:

$$\langle \sigma v \rangle = 4\pi \int_0^\infty du \left(\frac{\mu}{2\pi kT} \right)^{3/2} \exp \left(-\frac{\mu u^2}{2kT} \right) \sigma(u) u ,$$ \hspace{1cm} (15)

where μ is the reduced mass. Using $E = 1/2\mu u^2$, Eqn. (5) becomes

$$\langle \sigma v \rangle = \sqrt{\frac{8}{\pi \mu}} \left(\frac{1}{kT} \right)^{3/2} \int_0^\infty E \sigma(E) \exp \left(-E/kT \right) dE .$$ \hspace{1cm} (16)

The ion temperature in an advanced fuel cycle fusion plasma may reach 500 keV. One clearly would like to know the reaction cross section, $\sigma(E)$, up to an energy at least 4 KT (or 2 MeV in the most extreme case) to analyze fusion reactions among species with a Maxwellian distribution. In addition, nuclear scattering events between energetic fusion products and the background Maxwellian can transfer significant energy (> 1 MeV) to the struck particle thereby promoting it to higher energy where it is typically more reactive. In short, cross sections are required not just to
an energy of 4-5 KT but to the energy of fusion reaction products. The p-^6\text{Li} cycle is particularly useful to demonstrate this requirement.

The primary reactions of this fuel cycle are:

\begin{align*}
p + ^6\text{Li} & \rightarrow ^3\text{He} (2.3 \text{ MeV}) + \alpha (1.7 \text{ MeV}) \quad (17) \\
^3\text{He} + ^6\text{Li} & \rightarrow p (11.3 \text{ MeV}) + 2\alpha (2.81 \text{ MeV}) \quad (18a) \\
& \quad + p + ^8\text{Be} \text{ (various nuclear levels)} \quad (18b) \\
& \quad + d (.088 \text{ MeV}) + ^7\text{Be} (.026 \text{ MeV}) \quad (18c) \\
\end{align*}

Secondary and tertiary reactions include:

\begin{align*}
& \left\{ \begin{align*}
+ n + ^7\text{Be} (.42 \text{ MeV}) \\
+ p (4.4 \text{ MeV}) + ^7\text{Li} (.63 \text{ MeV}) \\
\end{align*} \right\} \\
& \begin{align*}
de + ^6\text{Li} & \rightarrow p (1.6 \text{ MeV}) + t + \alpha \quad (19a) \\
& \quad + n + ^3\text{He} + \alpha \quad (19b) \\
& \quad + 2\alpha (11.2 \text{ MeV}) \quad (19c)
\end{align*}
\end{align*}

\begin{align*}
d + ^3\text{He} & \rightarrow p (14.6 \text{ MeV}) + \alpha (4.7 \text{ MeV}) \quad (20a) \\
d + d & \rightarrow n + ^3\text{He} (.82 \text{ MeV}) \quad (20b) \\
& \quad + p (3 \text{ MeV}) + t (1.01 \text{ MeV}) \quad (21a) \\
d + ^7\text{Be} & \rightarrow p (11.2 \text{ MeV}) + 2\alpha (2.8 \text{ MeV}) \quad (21b) \\
d + t & \rightarrow n + ^4\text{He} (3.5 \text{ MeV}) \quad (22)
\end{align*}

\begin{align*}
t + ^3\text{He} & \rightarrow d (9.6 \text{ MeV}) + \alpha (4.8 \text{ MeV}) \quad (23a) \\
& \quad + p + n + \alpha \quad (23b)
\end{align*}

\begin{align*}
^3\text{He} + ^3\text{He} & \rightarrow 2p (5.7 \text{ MeV}) + \alpha (1.4 \text{ MeV}) \quad (24a) \\
^3\text{He} + ^7\text{Be} & \rightarrow 2p (4.5 \text{ MeV}) + 2\alpha (1.1 \text{ MeV}) \quad (24b) \\
t + ^7\text{Be} & \rightarrow p (4.2 \text{ MeV}) + 2\alpha \quad (25)
\end{align*}

\begin{align*}
d + ^7\text{Li} & \rightarrow n + 2d (2.52 \text{ MeV}) \quad (26)
\end{align*}
In addition there are at least thirty side reactions and thirteen $^6\text{Li} + ^6\text{Li}$ exothermic reactions which produce elements from H to ^{12}C and neutrons. Many of the fusion reaction products are energetic and may react with elements in the background plasma prior to completely slowing down (fast fusion or two-component fusion events). Including these fast fusion events is crucial, particularly for cycles that are propagating. Some important propagating fusion reaction sequences in the $^p-^6\text{Li}$ cycle (the fast particle has a bar over the element's designation) include:

\begin{align*}
\begin{aligned}
\{ & ^{3}\text{He} + ^{6}\text{Li} \rightarrow \bar{p} + 2\alpha \\
& \bar{p} + ^{6}\text{Li} \rightarrow ^{3}\text{He} + \alpha \\
\ldots
\}
\end{aligned}
\end{align*}

(29)

\begin{align*}
\begin{aligned}
\{ & ^{3}\text{He} + ^{6}\text{Li} \rightarrow \bar{p} + 2\alpha \\
& \bar{p} + ^{6}\text{Li} \rightarrow ^{3}\text{He} + \alpha \\
\ldots
\}
\end{aligned}
\end{align*}

(30)

\begin{align*}
\begin{aligned}
\{ & ^{3}\text{He} + ^{6}\text{Li} \rightarrow \bar{d} + ^{7}\text{Be} \\
& \bar{d} + ^{6}\text{Li} \rightarrow \bar{p} + ^{7}\text{Li} \\
& \bar{p} + ^{6}\text{Li} \rightarrow ^{3}\text{He} + \alpha \\
\ldots
\}
\end{aligned}
\end{align*}

(31)

\begin{align*}
\begin{aligned}
\{ & ^{3}\text{He} + ^{6}\text{Li} \rightarrow \bar{d} + ^{7}\text{Be} \\
& \bar{d} + ^{7}\text{Be} \rightarrow \bar{p} + 2\alpha \\
& \bar{p} + ^{6}\text{Li} \rightarrow ^{3}\text{He} + \alpha \\
\ldots
\}
\end{aligned}
\end{align*}

(32)

and there are others. See eq. 17-28 for the energies of the reaction products.

Nuclear elastic scattering of the energetic products with the background plasma produces additional energetic particles which can undergo fast fusion and further propagate the reaction. Therefore, the reaction cross section for the various channels and nuclear elastic scattering cross sections are required up to about 20 MeV.
2. Status of Nuclear Data for Advanced Fusion Fuel Cycle Analysis

The literature has been examined through October 1979. All data for a given reaction were examined for consistency. In general the uncertainties or inconsistencies ranged from 10% to as much as an order of magnitude. Cross sections for some of the reaction branches have either been partially measured or not measured at all. In the reactions $^3\text{He}-^6\text{Li}$ and $^3\text{He}-^7\text{Be}$, for example, recent measurements at ANL indicate that the total reaction cross section may be 10 to 50 times larger than previously reported values. For other reactions, such as ^3He with ^7Be, the data is nonexistent.

The status of nuclear data is summarized in matrix form in Tables 2, 3 and 4. The asterisk (*) indicates the reaction is important for fusion fuel cycle analysis; the check (✓) indicates the data for that reaction are reasonably consistent; while the cross (X) indicates the existing data are either inconsistent or have large error bars. References are given in the parentheses. The numbers followed by MeV give the energy range over which data have been measured. A literature search for nuclear inelastic cross sections is in progress.

The data for several of the major fusion reactions will now be examined in greater detail.

1) The ^3He Reactions

\[\text{d} + \text{d} \rightarrow \text{n} + ^3\text{He} \quad Q = 3.269 \text{ MeV} \]
\[\text{d} + \text{d} \rightarrow \text{p} + t \quad Q = 4.033 \text{ MeV} \]

Liskien and Paulsen(461) have summarized and evaluated the cross section measurements for $E_d = .013 - 10 \text{ MeV}$. The data and evaluation are shown in Fig. 8. This is adequate for fusion fuel cycle analysis.
<table>
<thead>
<tr>
<th></th>
<th>(p)</th>
<th>(d)</th>
<th>(t)</th>
<th>(^3\text{He})</th>
<th>(^4\text{He})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ELASTIC ((1 - 20))</td>
<td>ELASTIC ((46 - 49))</td>
<td>(S)</td>
<td>(S)</td>
<td>ELASTIC ((164 - 178))</td>
</tr>
<tr>
<td></td>
<td>(\sigma (E, \theta))</td>
<td>(\sigma (E, \theta))</td>
<td>(\star \checkmark)</td>
<td>(\star \checkmark)</td>
<td>(\sigma (E, \theta))</td>
</tr>
<tr>
<td></td>
<td>(0.2 - 30. \text{ MeV})</td>
<td>(2. - 20. \text{ MeV})</td>
<td></td>
<td></td>
<td>(0.3 - 20. \text{ MeV})</td>
</tr>
<tr>
<td></td>
<td>REACTION ((50 - 90))</td>
<td></td>
<td></td>
<td></td>
<td>(\star \checkmark)</td>
</tr>
<tr>
<td></td>
<td>(\sigma (E) \text{ or } \sigma (E, \theta))</td>
<td></td>
<td></td>
<td></td>
<td>(\text{REACTION } (____))</td>
</tr>
<tr>
<td>(d)</td>
<td>ELASTIC ((21 - 30))</td>
<td>ELASTIC ((91 - 93))</td>
<td>(\checkmark \star \checkmark)</td>
<td>(\star \checkmark)</td>
<td>ELASTIC ((179 - 182))</td>
</tr>
<tr>
<td></td>
<td>(\sigma (E, \theta))</td>
<td>(\sigma (E, \theta))</td>
<td></td>
<td></td>
<td>(\sigma (E, \theta))</td>
</tr>
<tr>
<td></td>
<td>(0.05 - 8.3 \text{ MeV})</td>
<td>(0.013 - 10. \text{ MeV})</td>
<td></td>
<td></td>
<td>(1.2 - 18.2 \text{ MeV})</td>
</tr>
<tr>
<td></td>
<td>(\star \checkmark)</td>
<td>(\star \checkmark)</td>
<td></td>
<td></td>
<td>(\star \checkmark)</td>
</tr>
<tr>
<td></td>
<td>REACTION ((31 - 45))</td>
<td>REACTION ((94 - 112))</td>
<td></td>
<td></td>
<td>(\text{REACTION } (____))</td>
</tr>
<tr>
<td></td>
<td>(\sigma (E) \text{ or } \sigma (E, \theta))</td>
<td>(\sigma (E) \text{ or } \sigma (E, \theta))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.0 - 10. \text{ MeV})</td>
<td>(0.01 - 15. \text{ MeV})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\text{REACTION } (____))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(^3\text{He})</td>
<td>ELASTIC ((126 - 140))</td>
<td>ELASTIC ((113 - 116))</td>
<td>(\star \checkmark)</td>
<td>(\star \checkmark)</td>
<td>ELASTIC ((155 - 158))</td>
</tr>
<tr>
<td></td>
<td>(\sigma (E, \theta))</td>
<td>(\sigma (E, \theta))</td>
<td></td>
<td></td>
<td>(\sigma (E, \theta))</td>
</tr>
<tr>
<td></td>
<td>(0.1 - 20. \text{ MeV})</td>
<td>(0.38 - 20. \text{ MeV})</td>
<td></td>
<td></td>
<td>(5. - 20. \text{ MeV})</td>
</tr>
<tr>
<td></td>
<td>(\star \checkmark)</td>
<td>(\star \checkmark)</td>
<td></td>
<td></td>
<td>(\star \checkmark)</td>
</tr>
<tr>
<td></td>
<td>REACTION ((117 - 125))</td>
<td>REACTION ((149 - 154))</td>
<td></td>
<td></td>
<td>(\text{REACTION } (____))</td>
</tr>
<tr>
<td></td>
<td>(\sigma (E) \text{ or } \sigma (E, \theta))</td>
<td>(\sigma (E) \text{ or } \sigma (E, \theta))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.25 - 15. \text{ MeV})</td>
<td>(0.15 - 1.9 \text{ MeV})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(^4\text{He})</td>
<td>ELASTIC ((147 - 148))</td>
<td>ELASTIC ((155 - 158))</td>
<td>(\star \checkmark)</td>
<td>(\star \checkmark)</td>
<td>ELASTIC ((183 - 190))</td>
</tr>
<tr>
<td></td>
<td>(\sigma (E, \theta))</td>
<td>(\sigma (E, \theta))</td>
<td></td>
<td></td>
<td>(\sigma (E, \theta))</td>
</tr>
<tr>
<td></td>
<td>(0.58 - 2. \text{ MeV})</td>
<td>(5. - 20. \text{ MeV})</td>
<td></td>
<td></td>
<td>(1.72 - 20. \text{ MeV})</td>
</tr>
<tr>
<td></td>
<td>(\star \checkmark)</td>
<td>(\star \checkmark)</td>
<td></td>
<td></td>
<td>(\star \checkmark)</td>
</tr>
<tr>
<td></td>
<td>(\text{REACTION } (____))</td>
<td>(\text{REACTION } (____))</td>
<td></td>
<td></td>
<td>(\text{REACTION } (____))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(p)</td>
<td>(d)</td>
<td>(t)</td>
<td>(^3\text{He})</td>
<td>(^4\text{He})</td>
</tr>
<tr>
<td>-------</td>
<td>------------------------------</td>
<td>--------------------------------</td>
<td>----------------------------</td>
<td>---------------------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>(^6\text{Li})</td>
<td>ELLASTIC (191 - 196) (\sigma (E, \theta)) 0.5 - 16. MeV</td>
<td>ELLASTIC (211 - 213) (\sigma (E, \theta)) 2. - 7. MeV</td>
<td>ELLASTIC (231) (\sigma (E, \theta)) 8. - 20. MeV</td>
<td>ELLASTIC (246 - 250) (\sigma (E, \theta)) 2. - 7.5 MeV</td>
<td></td>
</tr>
<tr>
<td></td>
<td>REACTION (197 - 210) (\sigma (E, \theta)) 0.14 - 12. MeV</td>
<td>REACTION (213 - 225) (\sigma (E, \theta)) 0.1 - 1. MeV</td>
<td>REACTION (226 - 230) (\sigma (E, \theta)) 0.3 - 20. MeV</td>
<td>REACTION 232 - 245 (\sigma (E, \theta)) or (\sigma (E)) 1.2 - 4.2 MeV</td>
<td></td>
</tr>
<tr>
<td>(^7\text{Li})</td>
<td>ELLASTIC (251 - 254) (\sigma (E, \theta)) 0.4 - 20. MeV</td>
<td>ELLASTIC (286) (\sigma (E, \theta)) 0.4 - 1.8 MeV</td>
<td>ELLASTIC (311) (\sigma (E)) 11. MeV</td>
<td>ELLASTIC (326 - 330) (\sigma (E, \theta)) 1.6 - 20. MeV</td>
<td></td>
</tr>
<tr>
<td></td>
<td>REACTION (255 - 285) (\sigma (E, \theta)) or (\sigma (E)) 0.8 - 15. MeV</td>
<td>REACTION (287 - 300) (\sigma (E)) or (\sigma (E, \theta)) 0.6 - 2.6 MeV</td>
<td>REACTION (301 - 310) (\sigma (E, \theta)) 0.23 - 2.5 MeV</td>
<td>REACTION (312 - 325) (\sigma (E, \theta)) 0.8 - 6. MeV</td>
<td></td>
</tr>
<tr>
<td>(^7\text{Be})</td>
<td>ELLASTIC (\ldots) (\sigma (E, \theta)) 0.8 - 1.7 MeV</td>
<td>ELLASTIC (\ldots) (\sigma (E, \theta)) 0.8 - 1.7 MeV</td>
<td>ELLASTIC (\ldots) (\sigma (E, \theta)) 0.8 - 1.7 MeV</td>
<td>ELLASTIC (\ldots) (\sigma (E, \theta)) 0.8 - 1.7 MeV</td>
<td>ELLASTIC (\ldots) (\sigma (E, \theta)) 0.8 - 1.7 MeV</td>
</tr>
<tr>
<td></td>
<td>REACTION (\ldots) (\sigma (E, \theta)) 0.8 - 1.7 MeV</td>
<td>REACTION (331-332) (\sigma (E, \theta)) 0.8 - 1.7 MeV</td>
<td>REACTION (306) (\sigma (E, \theta)) 0.8 - 1.7 MeV</td>
<td>REACTION (306) (\sigma (E, \theta)) 0.8 - 1.7 MeV</td>
<td>REACTION (\ldots) (\sigma (E, \theta)) 0.8 - 1.7 MeV</td>
</tr>
<tr>
<td>(^{4}\text{He})</td>
<td>(^{3}\text{He})</td>
<td>(^{t}\text{t})</td>
<td>(^{d}\text{d})</td>
<td>(^{p}\text{p})</td>
<td>(^{9}\text{Be})</td>
</tr>
<tr>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>ELASTIC (381 - 384)</td>
<td>(\sigma(\text{E}, \theta))</td>
<td>1.4 - 20. MeV</td>
<td>REACTION ()</td>
<td>ELASTIC (431 - 433)</td>
<td>Excitation function</td>
</tr>
<tr>
<td>(^{3}\text{He})</td>
<td>ELASTIC (373 - 375)</td>
<td>(\sigma(\text{E}, \theta)) or (\sigma(\text{E}, \theta'))</td>
<td>2. - 20. MeV</td>
<td>REACTION ()</td>
<td>(\sigma(\text{E}, \theta))</td>
</tr>
<tr>
<td>(^{t}\text{t})</td>
<td>ELASTIC (371, 372)</td>
<td>(\sigma(\text{E}, \theta))</td>
<td>0.52 - 2.1 MeV</td>
<td>REACTION (371, 372)</td>
<td>(\sigma(\text{E}, \theta))</td>
</tr>
<tr>
<td>(^{d}\text{d})</td>
<td>ELASTIC (346 - 350)</td>
<td>(\sigma(\text{E}, \theta))</td>
<td>0.4 - 7. MeV</td>
<td>REACTION ()</td>
<td>(\sigma(\text{E}, \theta))</td>
</tr>
<tr>
<td>(^{p}\text{p})</td>
<td>ELASTIC (333 - 340)</td>
<td>(\sigma(\text{E}, \theta))</td>
<td>0.2 - 10. MeV</td>
<td>REACTION (331 - 345)</td>
<td>(\sigma(\text{E}, \theta))</td>
</tr>
<tr>
<td>(^{9}\text{Be})</td>
<td>No data reported</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
$D (d, n) ^3\text{He}$

Integrated Cross Section σ
(2) The p-t Reaction

\[t + p + n + ^3\text{He} \quad Q = -0.764 \text{ MeV} \quad (35) \]

Cross section measurements have been evaluated by Liskien and Paulsen. \(^{(462)}\) The angular distribution measurements are inconsistent with one another. Most of the integrated cross section measurements are within 15% of the recommended values. Experimental values for \(E_p = 1.0 - 10\ \text{MeV}\) are shown in Fig. 9. This data is adequate for fusion fuel cycle analysis.

(3) The d-t Reactions

\[t + d + n + \alpha \quad Q = 17.590 \text{ MeV} \quad (36) \]

There has been only one measurement since 1960. The cross section measurements have been evaluated \(^{(463)}\) and indications are that a number of reported angular distributions are not satisfactory at energies above 5 MeV. Most of the integrated cross section measurements are within 10% of the recommended values. In general, the data is adequate for fusion fuel cycle analysis.

(4) The d-\(^3\text{He}\) Reaction

\[^3\text{He} + d \to p + \alpha \quad Q = 18.35 \text{ MeV} \quad (37) \]

There have been no measurements since 1960. A pronounced resonance occurs at \(E_d = 430 \text{ keV}\) with \(\Gamma \sim 450 \text{ keV}\). The experimental data disagree in the neighborhood of this resonance (~25%). However, analysis by Hale \(^{(464)}\) suggests that the recommended values are very good. Thus, the cross sections are adequate for fusion fuel cycle analysis.

(5) The \(^3\text{He}-^3\text{He}\) Reactions

\[^3\text{He} + ^3\text{He} + p + ^5\text{Li} \quad Q = 10.890 \text{ MeV} \quad (38) \quad \quad \quad p + \alpha \]
$T(p, n) \ ^3\text{He}$

Integrated Cross Section σ

$\sigma [\text{mb}]$

$E_p [\text{MeV}]$

Fig. 9
\[^3\text{He} + ^3\text{He} \rightarrow 2p + \alpha \quad Q = 12.86 \text{ MeV} \quad (39) \]

A study of the proton spectrum indicates that the reaction proceeds mainly via a direct mechanism and the \(^5\text{Li}\) channel. However, the branching ratio is not firmly established, particularly at low energy.

(6) The \(^6\text{Li}\) Reaction

\[^6\text{Li} + p \rightarrow ^3\text{He} + \alpha \quad Q = 4.023 \text{ MeV} \quad (40) \]

The cross section measurements for \(E_p = 0.14-3\) MeV by Elwyn et al.\(^{197}\) appear to be definitive. The earlier measurements are inconsistent with one another as shown in Fig. 10. Cross section measurements for \(E_p = 3\) to 12 MeV have been made recently by Gould et al.\(^{198}\) The measurements for \(E_p = 62\) to 188 keV deviate from an S-wave Gamow plot above \(\sim 130\) keV.

(7) The \(^d-^6\text{Li}\) Reactions

\[d + ^6\text{Li} \rightarrow n + ^7\text{Be} \quad Q = 3.380 \text{ MeV} \quad (41) \]

\[\rightarrow p + ^7\text{Li} \quad Q = 4.026 \text{ MeV} \quad (42) \]

\[\rightarrow p + t + \alpha \quad Q = 2.561 \text{ MeV} \quad (43) \]

\[\rightarrow n + ^3\text{He} + \alpha \quad Q = 1.796 \text{ MeV} \quad (44) \]

\[\rightarrow 2\alpha \quad Q = 22.374 \text{ MeV} \quad (45) \]

The recent measurements for \(E_d = 0.1 - 1\) MeV by Elwyn et al.\(^{214}\) are definitive. Other measurements differ sharply with one another, even in recent experiments.\(^{218}\) Cross section measurements for \(E_d > 1\) MeV are needed for a complete analysis.

(8) The \(^3\text{He}-^6\text{Li}\) Reactions

\[^6\text{Li} + ^3\text{He} + p + ^8\text{Be(g.s.)} \quad Q = 16.787 \text{ MeV} \quad (46) \]

\[\downarrow 2\alpha \]
\[\begin{align*}
\rightarrow p + ^{8}\text{Be}(2.94) & \quad Q = 13.847 \text{ MeV} \quad (47) \\
\rightarrow 2\alpha & \\
\rightarrow p + ^{8}\text{Be}(11.4) & \quad Q = 5.387 \text{ MeV} \quad (48) \\
\rightarrow 2\alpha & \\
\rightarrow p + ^{8}\text{Be}(16.63) & \quad Q = 0.157 \text{ MeV} \quad (49) \\
\rightarrow 2\alpha & \\
\rightarrow p + ^{8}\text{Be}(16.92) & \quad Q = -0.1325 \text{ MeV} \quad (50) \\
\rightarrow 2\alpha & \\
\rightarrow p + ^{8}\text{Be}(17.64) & \quad Q = -0.853 \text{ MeV} \quad (51) \\
\rightarrow p + 2\alpha & \quad Q = 16.88 \text{ MeV} \quad (52) \\
\rightarrow \alpha + ^{5}\text{Li} & \quad Q = 14.91 \text{ MeV} \quad (53) \\
\rightarrow p + \alpha & \\
\rightarrow d + ^{7}\text{Be} & \quad Q = 0.1126 \text{ MeV} \quad (54) \\
\rightarrow d + ^{7}\text{Be}(0.43) & \quad Q = -0.31 \text{ MeV} \quad (55) \\
\rightarrow 2p + ^{7}\text{Li} & \quad Q = -0.468 \text{ MeV} \quad (56)
\end{align*} \]

A measurement is in progress by A. Elwyn et al., at the Argonne National Laboratory.\(^{(465)}\) The earlier measurements are not complete. At least 5 nuclear levels in \(^{8}\text{Be}\) can be excited. It is expected that the reaction cross section to all branches will be at least a factor of 10 larger than those now known. For example, at \(E_{3}\text{He} = 3.5 \text{ MeV}\), Gould et al.\(^{(245)}\) measured \(\sigma_r \approx 10-12 \text{ mb}\) for the \(^{8}\text{Be}\)(g.s.) branch, \(\sigma_r \approx 55 \text{ mb}\) for the \(^{8}\text{Be}(2.94 \text{ MeV})\) branch and estimated \(\sigma_r \approx 42 \text{ mb}\) for the continuum breakup reaction, Elwyn et al., indicate values could be \(\sigma_r \approx 30-50 \text{ mb}\) for the \(^{8}\text{Be}(16.63 \text{ MeV})\) branch, \(\sigma_r \approx 20-40 \text{ mb}\) for the \(^{8}\text{Be}(16.9 \text{ MeV})\) branch and \(\sigma_r \approx 400 \text{ mb}\) for the \(d + ^{7}\text{Be}\) branch.
(9) The d-7Be Reactions

There have been no measurements since 1960, since 7Be is somewhat rare. d + 7Be reacts via the same compound nucleus as 3He + 6Li. Therefore, it will have the same reaction channels as 3He + 6Li except for eqns. (54) and (55). Since the existing data are only for the eqn. (46) and (47) branches, measurements for each branch stated above are required. However, in lieu of an experimental determination of σ, a standard 9-nucleon R-matrix calculation can give good estimated values, provided that the cross sections of each branch of 3He + 6Li reaction are given.

(10) The p-11B Reaction

\[^{11}\text{B} + \text{p} \rightarrow ^8\text{Be} + \alpha \quad Q = 8.590 \text{ MeV} \]
(57)

\[^{11}\text{B} + \text{p} \rightarrow 3\alpha \quad Q = 8.682 \text{ MeV} \]
(58)

The most recent cross section measurements for $E_p = 0.08 - 1.4$ MeV by Davidson et al. (434) appear to be definitive. There are 7 pronounced resonances in the range, $E_p = .1 - 5$ MeV. The energy of the resonances, the cross sections at each resonance peak, and the width of each resonance are summarized in Table 5. The cross sections are uncertain above 2 MeV and should be measured again.
Table 5

Parameters for p-\(^{11}\)B Resonances

<table>
<thead>
<tr>
<th>Resonance Energy (E_p) (MeV)</th>
<th>Cross Section at Resonance Peak (mb)</th>
<th>Resonance Width (\Gamma) (keV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>.172</td>
<td>28</td>
<td>10</td>
</tr>
<tr>
<td>.64</td>
<td>800</td>
<td>300</td>
</tr>
<tr>
<td>1.39</td>
<td>180</td>
<td>1160</td>
</tr>
<tr>
<td>1.98</td>
<td>133 - 132</td>
<td>100</td>
</tr>
<tr>
<td>2.62</td>
<td>200 - 347</td>
<td>320</td>
</tr>
<tr>
<td>3.75</td>
<td>200 - 348</td>
<td>1100</td>
</tr>
<tr>
<td>4.93</td>
<td>130 - 210</td>
<td>180</td>
</tr>
</tbody>
</table>
CHAPTER II

REFERENCES

24. Balashko et al., JETP 19 (64) 1281.
27. Hemmendinger et al., Phys. Rev. 79 (49) 1137.
28. Ennis and Hemmendinger, Phys. Rev. 95 (54) 772.
34. Jarmie and Seagrave LA-2014 (56).
35. Gibbons and Macklin, Phys. Rev. 114 (59) 571.
38. Vlasov et al., JETP 1 (55) 500.
42. Bogdandov et al., JETP 9 (59) 440.
44. Wilson et al., Nucl. Phys. 27 (61) 421.
46. Theus et al., Nucl. Phys. 80 (66) 273.
49. Cahill et al., CEN-Saclay Annual Report CEA-N 844 (67) 121.
54. Ganeev et al., Atomnaya Energiya Suppl. 5 (57) 21.
57. Hunter and Richards, Phys. Rev. 76 (49) 1445.
58. Ref. 40.
61. - 70. Not Used
67. Ref. 46.
68. Kane, Nucl. Phys. 10 (59) 429.
70. Volkov et al., Atomnaya Energiya Suppl. 5 (57) 13.
75. Ref. 43.
77. Brill et al., Atomnaya Energiya 16 (64) 141.
79. Fowler and Brolley, Rev. Mod. Phys. 28 (56) 103.
80. Ref. 34.
82. Stratton et al., Phys. Rev. 88 (52) 257.
83. Brolley et al., Phys. Rev. 120 (60) 905.
86. Ref. 51.
97. Balabanov et al., Atomnaya Energiya Suppl. 5 (57) 43.
100. Bame and Perry, Phys. Rev. 107 (57) 1616.
102. Hemmendinger and Argo, Phys. Rev. 98 (55) 70.
103. Galonsky and Johnson, Phys. Rev. 104 (56) 421.
105. Brill et al., Atomnaya Energiya 16 (64) 141.
106. Stratton and Freir, Phys. Rev. 88 (52) 261.
109. Bretscher and French, Phys. Rev. 75 (49) 1154.
112. Paulsen and Liskien, Nucl. Phys. 56 (64) 394.
117. Jarmie et al., LA-2014 (57).
120. Stewart et al., Phys. Rev. 119 (60) 1649.
123. Frier and Halmgren, Phys. Rev. 93 (54) 825.
128. Lovberg, Phys. Rev. 103 (56) 1393.
130. Brolley and Fowler, Fast Neutron Physics (60).
133. Sweetman, Phil. Mag. 46 (55) 358.
134. Artemov et al., JETP 10 (60) 474.
135. Clegg et al., Nucl. Phys. 50 (64) 621.
136. McDonald et al., Phys. Rev. 133 (64) B1178.
137. Tombrello et al., Nucl. Phys. 59 (63) 541.
142. Frank and Grammel, Phys. Rev. 100 (55) 973A.
143. Agnew et al., Phys. Rev. 84 (51) 862.
147. Ivanovich et al., Nucl. Phys. A110 (68) 441.
149. Kuhn and Schlenk, Nucl. Phys. 48 (63) 353.
151. Youn et al., JETP 12 (61) 163.
155. Ref. 147 & Ref. 148
156. Tombrello and Bacher, Phys. Rev. 130 (63) 1108.
169. Freemantle et al., Phil. Mag. 45 (54) 1090.
170. Artemov and Vlasov, JETP 12 (61) 1124.
173. Ohsen and Young, Nucl. Phys. 52 (64) 134.
174. Senhouse and Tombrello, Nucl. Phys. 57 (64)624.
175. Matons and Browne, Phys. Rev. 136 (64) B399.
184. Barnard et al., Nucl. Phys. 50 (64) 629.
185. Tombrello and Parker, Phys. Rev. 130 (63) 1112.
186. Spigier and Tombrello, Bull. Am. Phys. Soc. 9 (64) 703.
188. Spigier and Tombrello, Phys. Rev. 163 (67) 964.
190. Ivanovich et al., Nucl. Phys. A110 (68) 441.
193. Fasoli et al., Nuovo Cim. 34 (64) 1832.
194. Merchez et al., J. Physique 29 (68) 969.
195. Bashkin and Richards, Phys. Rev. 84 (51) 1124.
196. McCray, Phys. Rev. 130 (63) 2034.
197. Elwyn, Holland, Davids et al., accepted by
NPP 425, 697.
203. Beavmevielle, CEA-R-2624 (64).
204. Hub et al., Z. Phys. 252 (72) 332.
205. Varnagy et al., Nucl. Int. Methods 119 (74)
451.
206. Hooton and Ivanovich, AERE-R-7761 (74).
207. Johnston and Sargood, Nucl. Phys. A224 (74)
349.
210. Gemeinhardt et al., Zeit, für Physik 197 (66)
58.
211. Paul and Lieb, Nucl. Phys. 53 (64) 465.
212. Bruno et al., J. Physique Cl (66) 85.
222. Whaling et al., Phys. Rev. 75 (49) 688.
224. Hirst et al., Phil. Mag. 45 (54) 762.
37 (73) 1967.
230. Ciric et al., Fizika (Yugoslavia) 4 (72) 40 and
193.
232. Holmgren, Nuclear Research with Low Energy
Accelerators, p. 213.
233. Mazari et al., Proc. 2nd Int. Conf. on Nuclidian
Masses (63).
236. Reimann et al., Can. J. Phys. 46 (68) 2241.
239. Vignon et al., J. Physique 30 (69) 913.
243. Ref. 231 and Ref. 217
245. Gould and Boyce, Nucl. Sci. and Eng. 60 (76) 477.
250. Balakrishnan et al., Nuovo Cim 1A (71) 205.
256. Conrad et al., Nature 45 (58) 204.
259. Millier et al., Nucl. Phys. 54 (64) 155.
260. Hadsen and Vedelsby, Nucl. Phys. 55 (64) 477.
262. Taschek and Hammender, Phys. Rev. 74 (48) 373.
264. Cranberg, LA-1654 (54).
271. Bogdanov et al., Soviet J. At. En. 3 (59) 907.
277. Bair et al., Nucl. Phys. 53 (64) 209.
278. Buccino et al., Nucl. Phys. 53 (64) 375.
281. Lefevre and Din, Austr. J. Phys. 22 (69) 669.
283. Elbakir et al., Nucl. Inst. Meth. 105 (72) 519.
284. Meadows and Smith, ANL-7938 (72).
286. Ford, Phys. Rev. 136 (64) B953.
290. Kavanagh, Nucl. Phys. 15 (60) 411.
294. Bashkin, Phys. Rev. 95 (54) 1012.
296. Garnir et al., Bull. Soc. R. Sci., Liege (Belgium) 42 (73) 195.
297. Crews, Phys. Rev. 82 (51) 100.
299. Valter et al., Soviet J. At. En. 10 (61) 574.
301. Valter et al., Soviet J. At. En. 10 (61) 577.
304. Cicic et al., Fizika (Yugoslavia) 7, Suppl. 1 (77) 39.
305. Subotic et al., Fizika (Yugoslavia) 9, Suppl. 1 (77) 44.
307. Hidditon and Pullen, Nucl. Phys. 51 (64) 50.
308. Hunchen et al., Nucl. Phys. 56 (64) 417.
315. Lin and Chin, J. Phys. (Taiwan) 10 (72) 76.
322. Stanojevic et al., Fizika 3 (71) 99.
332. Kavanagh, Nucl. Phys. 18 (60) 492.
335. Kiid and Crinean, Australian J. Phys. 27 (74) 663.
337. Dearnley, Phil. Mag. 1 (56) 821.
341. Bertrand et al., Comm. A L'energie Atomique, RPT. CEA 3575 (68).
346. Djaloeis et al., Nucl. Phys. 15 (72) 266.
348. Lombard and Friedland, Z. Phys. 249 (72) 349.
351. Ralph and Dunnam, Phys. Rev. 120 (60) 249A.
352. Bardes and Owen, Phys. Rev. 120 (60) 1369.
353. Evans et al., Phys. Rev. 75 (49) 1161.
355. Siemssen et al., Nucl. Phys. 69 (65) 209.
358. De Jong et al., Physica 18 (52) 676.
360. Ambrossino et al., J. Physique C1 (66) 62.
361. Farouk et al., Z. F. Phys. 201 (67) 52.
365. Read et al., Nucl. Phys. 23 (61) 386.
367. Friedland et al., Z. Phys. 267 (74) 97.
377. Artemov et al., Yadernaya Fiz. 1 (65) 1019.
380. Hoazed and Holmgren, Phys. Rev. 166 (68) 977.
383. Taylor et al., Nucl. Phys. 65 (65) 318.
387. Boerli et al., Fizika (Yugoslavia) 2 (70) 19.
388. Jenkin et al., Nucl. Phys. 50 (64) 516.
CHAPTER II

REFERENCES

24. Balashko et al., JETP 19 (64) 1281.
27. Hemmendinger et al., Phys. Rev. 79 (49) 1137.
28. Ennis and Hemmendinger, Phys. Rev. 95 (54) 772.
34. Jarmie and Seagrave LA-2014 (56).
35. Gibbons and Macklin, Phys. Rev. 114 (59) 571.
38. Vlasov et al., JETP 1 (55) 500.
446. Fortune and Vincent, Phys. Rev. 185 (69) 1401.
448. Breuer, Z. Phys. 178 (64) 268.
449. Kavanagh and Barnes, Phys. Rev. 112 (58) 503.
450. Weller and Blue, Nucl. Phys. A211 (73) 221.
452. Almond and Risser, Nucl. Phys. 72 (65) 436.
455. Ciric et al., Fizika (Yugoslavia) 9, Suppl. 1 (77) 39.
461. Liskien and Paulsen, Report EANDC (E) - 143 "L" (72).
462. Liskien and Paulsen, Report EANDC (E) - 152 "L" (72).
463. Liskien and Paulsen, Report EANDC (E) - 144 "L" (72).
465. A. Elwyn et al., private communication.
III. Theory

The proper determination of the potential of an advanced fuel cycle requires a study of fusion reaction kinetics, including subtle effects like fast fusion, nuclear elastic and inelastic scattering, Doppler broadening of the energy distribution of reaction products, and the partition of slowing down energy between ions and electrons. The next sections discuss these effects in detail.

1. Slowing Down Theory

A typical fusion plasma temperature is in the tens to hundreds of keV range, while the reaction products are in the MeV to tens of MeV range. To treat the relaxation of the reaction products, the rate of energy loss of a charged particle by coulomb scattering has been calculated numerous times with varying degrees of sophistication.\(^{(1-4)}\) It is necessary to take into account, for light elements, the nuclear-force contribution to scattering. This has also been noted by Devanly and Stein.\(^{(5)}\) However, these previous studies\(^{(1-5)}\) assumed that charged particle slowing down can be described by a continuous theory. This approximation is valid only if the particle energy transfer per collision is small. However, nuclear elastic scattering, large angle coulomb scattering, nuclear inelastic scattering and fast fusion reactions will transfer large amounts of energy which cannot be properly described by the continuous slowing down theory. A better treatment of the process is to use a continuous theory for the small energy
transfer range and a discrete theory for the large energy transfer range.

The small energy transfer collisions due to coulomb scattering are typically several orders of magnitude larger than other nuclear reaction cross sections at small angle. However, in some cases, nuclear-coulomb interference could be on the same order. It is assumed that coulomb scattering and nuclear-coulomb interference are the only sources of small energy transfer collisions. With adjustments which will be described later, coulomb scattering interactions can properly describe the slowing down time based on small energy transfer collisions.

The average instantaneous rate of coulomb energy loss for a particle, k, slowing down in a plasma consisting of several kinds of particles j, can be expressed by the following two equations: (2,6)

\[-\left(\frac{\partial E_k}{\partial t} \right)_e = \left(\frac{4\pi e^4}{m_e} \right) \left(\frac{Z_k^2}{v_k} \right) n_i L_e F\left(\frac{v_k}{u_e} \right) Z \]
(59)

\[-\left(\frac{\partial E_k}{\partial t} \right)_i = \left(\frac{4\pi e^4}{m_e} \right) \left(\frac{Z_k^2}{v_k} \right) n_i m_e \sum_{\ell} \frac{Z_{\ell}^2 \beta_{\ell} L_{\ell} F\left(\frac{v_k}{u_{\ell}} \right)}{m_{\ell}} \]
(60)

where the superscript c refers to coulomb scattering and the subscripts e, k and \(\ell \) refer to electron, particle k and ion species \(\ell \). Further, Z refers to charge number, m to atomic mass (a.m.u.), \(n_i \) to total ion density, \(\beta \) to the atomic fraction of ions in the plasma and \(u \) to the speed of the thermal particle. The subscript j refers
to either electron or ions and \(x_j \equiv v_k / u_j \).

\[
F(x_j) \equiv \text{erf}(x_j) - (1 - m_j / m_k) \ x_j \ e^{-x_j^2} \tag{61}
\]

The Coulomb logarithm, \(\Lambda_j \), is written as

\[
\Lambda_j = \frac{1}{2} \ \ln(1 + \Lambda_j^2) \tag{62}
\]

where the argument is given by the following ratio:

\[
\Lambda_j = \frac{\lambda_D}{b_{oj}} \ \text{classical} \tag{63}
\]

\[
= \frac{\lambda_D}{\lambda_j} \ \text{quantum} \tag{64}
\]

with \(\lambda_D \), \(b_{oj} \) and \(\lambda_j \) being the total Debye shielding length, the cutoff impact parameter and the center of mass wavelength in two-body scattering, respectively.

By adjusting the cutoff impact parameter \(b_{oj} \) so that only small energy transfer collisions can occur and by adding a weighting factor to take the nuclear-Coulomb interference contribution into account, the continuous slowing down theory can be described by:

\[
-\frac{\partial E_k}{\partial t} |_e = \left(\frac{4\pi e^4}{m_e} \right) \ \frac{Z_k^2}{v_k} \ n_i \ L_e \ F(v_k/u_e) \ Z \tag{65}
\]

\[
-\frac{\partial E_k}{\partial t} |_i = \left(\frac{4\pi e^4}{m_e} \right) \ \frac{Z_k^2}{v_k} \ n_i \ m_e \ \sum \frac{Z_i^2 \beta_i \ L_i^* \ W_i F(v_k/u_i)}{m_i} \tag{66}
\]

where the superscript \(S \) refers to small energy transfer scattering, \(L_i^* \) is the adjusted value of \(L_i \) (called small energy transfer
logarithm), and \(W \) refers to the weighting factor which takes the nuclear-coulomb interference contribution into account. Define

\[
L^*_\lambda = L_\lambda \cdot \ln \left(\frac{1 - \cos \theta_c}{1 - \cos \theta_b} \right) / \ln(1 - \cos \theta_d)
\]

\[
W_\lambda = \int_{\cos \theta_d}^{\cos \theta_c} \frac{d\sigma}{d\Omega} \cos \theta / \int_{\cos \theta_d}^{\cos \theta_c} \frac{d\sigma}{d\Omega} d\cos \theta
\]

(67)

(68)

where \(\theta_d \) refers to the deflection angle (in C.M. system) corresponding to an impact parameter of \(\lambda_D \), \(\theta_b \) is the cutoff angle for traditional coulomb scattering, and \(\theta_c \) is the deflection angle for maximum energy transfer in the small energy transfer range.

Summing the two contributions, i.e., Eqs. (65) and (66), and making the substitutions \(E_k = \frac{1}{2} m_k v_k^2 \), \(ds = v_k dt \), the energy loss becomes related to the path length by:

\[
-n_i \, ds = dv_k [G(v_k, t)]^{-1}
\]

(69)

where:

\[
G(v_k) = \left(\frac{4\pi e^4}{m_e} \right) \frac{Z_k^2}{m_k v_k^3} L_e F(v_k/u_e) Z + \sum \frac{Z_k^2 B_{\lambda \lambda} L^*_\lambda W_\lambda F(v_k/u_{\lambda \lambda})}{m_{\lambda \lambda}}
\]

(70)

Since the composition and the temperature may change with time, e.g., reactions are taking place in the plasma, the function \(G \) is time-
dependent and denoted as $G(v,t)$.

2. Reactions while slowing down

If a slowing down particle k can react with a background particle λ, with a cross section $\sigma_{k\lambda}^R$, then the instantaneous probability per unit length that the reaction will take place during the slowing down process is given by:

$$ \frac{dP_{k\lambda}^R(v_k, t)}{dS} = \frac{1}{v_k} \int d\vec{v} \; \sigma_{k\lambda}^R(|\vec{v}_k - \vec{v}|) \; |\vec{v}_k - \vec{v}| f_\lambda(v, t) \quad (71) $$

where $f_\lambda(v, t)$ is the distribution function of particle λ and the superscript (*) denotes an instantaneous quantity. The instantaneous reaction probability of a particle k about its velocity v_k can be expressed as

$$ p_{k\lambda}^R(v_k, t) \; dv_k = \left[\int d\vec{v} \; \frac{f_\lambda(v, t) \; \sigma_{k\lambda}^R(|\vec{v}_k - \vec{v}|) \; |\vec{v}_k - \vec{v}|}{v_k \; n_i \; G(v_k, t)} \right] \; dv_k \quad (72) $$

The integration over the slowing down path can be converted to an integration from the initial velocity v_k to the final velocity u_k, yielding:

$$ p_{k\lambda}^R(v_k \rightarrow u_k, t) = \int_{u_k}^{v_k} d\vec{v} \left[\int d\vec{v} \; \frac{f_\lambda(v, t) \; \sigma_{k\lambda}^R(|\vec{v} - \vec{v}|) \; |\vec{v} - \vec{v}|}{v \; n_i \; G(v, t)} \right] \quad (73) $$

Since the particle k can react with one or more ions or react through several channels the total reaction probability is given as a sum
over all reactions and channels. The instantaneous probability then becomes:

\[p_{kT}^* (v_k, t) \, dv_k = \left\{ \sum_{\lambda} \int d\vec{v} \frac{f_{\lambda}(v, t)[\sum_{n}^{\sigma_{k\lambda}}(|\vec{v}' - \vec{v}|)]|\vec{v}' - \vec{v}|}{v_k \, n_i \, G(v_k, t)} \right\} \, dv_k \quad (74) \]

and

\[p_{kT}^R (v_k^+, u_k, t) = \sum_{\lambda} \int v_k d\vec{v} \int d\vec{v}' \frac{f_{\lambda}(v, t)[\sum_{n}^{\sigma_{k\lambda}}(|\vec{v}' - \vec{v}|)]|\vec{v}' - \vec{v}|}{v \, n_i \, G(V, t)} \quad (75) \]

The time-evolution of the full velocity distribution function of the various ions can be calculated by the expensive non-linear Fokker-Plank method. However, a linear approximation, the multigroup energy technique, will provide an inexpensive solution for the reaction kinetics study. It is assumed that the velocity distribution function is made up of a Maxwellian bulk with a small tail of energetic particles and can be expressed as:

\[f_{\lambda}(v, t) = f_{\lambda}^M(v, t) + f_{\lambda}^*(v, t) \]

where \(f_{\lambda}, f_{\lambda}^M \) and \(f_{\lambda}^* \) refer to the distribution function, the Maxwellian distribution function and the stripped distribution function which represents the tail of energetic particles. The discrete nature of large energy transfer events such as nuclear elastic scattering, large angle coulomb scattering, nuclear inelastic scattering and fast fusion reactions can also be fit into this scheme conveniently.
3. The reactivity of a propagating reaction

The reactivity can be enhanced by the propagating effect in the cycles such as \(p^6\text{Li} \). The \(p^6\text{Li} \) cycle is particularly useful to demonstrate the procedure to derive the power density formula for a propagating reaction cycle.

In order to show the procedures for which the power density formula of a fully propagating reaction cycle is obtained, an overly simplified case is to consider the reactions

\[
p + ^6\text{Li} \rightarrow ^3\text{He} + ^3\bar{\text{He}} + \alpha \tag{76}
\]

\[
^3\text{He} + ^6\text{Li} \rightarrow \bar{\nu} + 2\alpha \tag{77}
\]

The Maxwellian fusion reaction rates in this case are

\[
a_{16} = n_1 n_6 \langle \sigma v \rangle_{16} \tag{78}
\]

\[
a_{36} = n_3 n_6 \langle \sigma v \rangle_{36} \tag{79}
\]

where \(n_1, n_3 \) and \(n_6 \) are the densities of protons, \(^3\text{He}\), and \(^6\text{Li}\) respectively, and \(\langle \sigma v \rangle \)'s are the reaction rate parameters. Let \(\Gamma_{36}, \Gamma_{16} \) be the probabilities that fast \(^3\text{He}\) and fast protons produced by reactions (76) and (77) will fuse with \(^6\text{Li}\) prior to slowing down. Then the total production rate of \(^3\text{He}\) is

\[
p_3 = \frac{a_{16} + a_{36} \Gamma_{16}}{1 - \Gamma_{36} \Gamma_{16}} \tag{80}
\]

The power output in this branch is \(p_{30_{16}} \). The consumption rate of \(^3\text{He}\) is
\(C_3 = \frac{a_{36} + a_{16} \Gamma_{36}}{1 - \Gamma_{36} \Gamma_{16}} \) \hspace{1cm} (81)

The power output in this branch is \(C_3 Q_{36} \), where \(Q_{16} \) and \(Q_{36} \) are the nuclear reaction \(Q \) values for reactions (76) and (77).

The equilibrium \(^3 \text{He} \) content is found by setting \(P_3 = C_3 \) and gives

\[n_3 = n_1 \frac{<\sigma v>_{16}}{<\sigma v>_{36}} \frac{(1 - \Gamma_{36})}{(1 - \Gamma_{16})} \] \hspace{1cm} (82)

By substituting \(n_3 \) into the sum of the power output of the two branches, one has the total fusion power density:

\[P_F = a_{16} \frac{(Q_{16} + Q_{36})}{1 - \Gamma_{16}} \] \hspace{1cm} (83)

The fusion power density formula in this case is composed of two parts. The numerator is the power density formula of the conventional catalyzed \(p-^6 \text{Li} \) cycle. The denominator expresses the propagating effect.

The power density formula for the more general case with reactions:

\[p + ^6 \text{Li} + ^3 \text{He} (2.3 \text{ MeV}) + \alpha \]

\[^3 \text{He} + ^6 \text{Li} + \bar{p} (11.2 \text{ MeV}) + 2\alpha \]

\[D + ^3 \text{He} + \bar{p} (14.6 \text{ MeV}) + \alpha \]

\[D + D + n + ^3 \text{He} (.9 \text{ MeV}) \]

\[D + D + \bar{p} (3 \text{ MeV}) + T \]

\[^3 \text{He} + ^3 \text{He} + 2\bar{p} (3.1 \text{ MeV}) + \alpha \] \hspace{1cm} (84)
is complicated. To distinguish fast protons, we have used different numbers of overbars as in eqn. (84) The following notation is used in the power density formula to follow. The probability of fast particles, \bar{a}, \bar{a}, etc. reacting with a thermal particle b is expressed as $\bar{\Gamma}_{ab}$, $\bar{\Gamma}_{ab}$, etc. respectively. The Maxwellian reaction rate is expressed as $a_{\lambda_{bc}}$, where λ denotes the branch the reaction takes. $Q_{\lambda_{bc}}$ is the reaction Q value. We find for the fusion power density,

$$
P_F = \frac{a_{16} + a_{T22} \bar{\Gamma}_{16} + 2(a_{33} + a_{322} \bar{\Gamma}_{33})_16 + (a_{36} + a_{322} \bar{\Gamma}_{36})_16 + a_{23} \bar{\Gamma}_{16}}{1 - (\bar{\Gamma}_{33} 16 + \bar{\Gamma}_{36} 16 + \bar{\Gamma}_{32} 16)} \frac{a_{36} + a_{16} 36 + a_{322} \bar{\Gamma}_{36}}{1 - (\bar{\Gamma}_{33} 16 + \bar{\Gamma}_{36} 16 + \bar{\Gamma}_{32} 16)} \frac{a_{23} + a_{16} \bar{\Gamma}_{32} + a_{322} \bar{\Gamma}_{32}}{1 - (\bar{\Gamma}_{33} 16 + \bar{\Gamma}_{36} 16 + \bar{\Gamma}_{32} 16)}
$$

$$
Q_{16} + Q_{36} + Q_{33} + Q_{23} + a_{322} Q_{322} + a_{T22} Q_{T22}
$$

The density of 3He and of D, as well as the fast fusion probabilities, must be calculated in a self-consistent way.

From the partial balance equations, which take into account all the reactions involved, one can solve for the equilibrium density ratio of species in a fuel cycle. In addition, the energy balance equations and the fast fusion probabilities are needed if the fast reaction events are included. The p-6Li fuel cycle is chosen to illustrate the problems involved and the method developed.

The particle balance equations are cumbersome and it is convenient to use the following notations

$$
S_{cab} \equiv \langle cab \rangle = \langle c \rangle_{ab} \frac{C}{\text{cm}^3/\text{sec}}
$$

= Reaction parameter for reaction \(a + b \rightarrow c + d \)

where c is a reaction product chosen to characterize the reaction branch (channel)
\[S_{ab} \equiv \langle ab \rangle \equiv \frac{\Sigma c_{i,ab}}{n_s} \] includes all of the branches

\[G_a \equiv \gamma_a = \frac{n_a}{n_s} \] the ratio of the number density of species \(a \) to the reference species \(s \).

\[G_{S_{ab}} = (abab) = \gamma_a \gamma_b \Sigma_{i}^{} \delta_{ab} \] where \(\delta_{ab} \) is the Kronecker delta.

\[G_{S_{ab}} = (abab) = \gamma_a \gamma_b \Sigma_{i}^{} \delta_{ab} \Sigma c_{i,ab} \]

\[G_{FS_{cab}} = (abcab) = G_{S_{cab}} + \text{all of the fast reactions due to the} \]

\[\equiv G_{S_{cab}} + F_{S_{cab}} \] energetic a or b produced in the reactions involved prior to slowing down.

\[G_{FS_{ab}} = (abab) = \Sigma_{i}^{} (abc_{i,ab}) \ . \]

For \(p-^6\text{Li} \), the proton is chosen as the reference species and we define the density ratios as

\[\gamma_1 = \frac{n_p}{n_s} = 1, \quad \gamma_2 = \frac{n_d}{n_p}, \quad \gamma_3 = \frac{n_3}{n_p}, \quad \gamma_T = \frac{n_T}{n_p}, \]

\[\gamma_6 = \frac{n_6}{n_p}, \quad \gamma_L = \frac{n_L}{n_p}, \quad \gamma_7 = \frac{n_7}{n_p} \ . \] The ion temperature \(T_i \) and \(\gamma_6 \) will be specified in each run. The reaction rates of the major reactions considered are denoted by:

\((26726), (26L26), (26T26), (26326), (26A26), (22322), (22T22), (16316), (23P23), (36236), (36P36), (33P33), (37P37), (T7PT7), (27P27), (TTAT7), (2TA2T), (2LN2L), (T32T3), (T31T3), (T3PT3), (TLNTL), (3LP3L), (1L71L), (1L1T1L), and (TT31T7). \)

The particle balance equations can be described as follows:

For \(^3\text{He}: \)

\[(26326) + (22322) + (16316) + (1T31T) \]

\[= (23 \ 23) + (36 \ 36) + 2(33 \ 33) + (T3 \ T3) + (37 \ 37) \]

\[+ (3L \ 3L) \]

\[\quad \q
For ^7Be: $$(267T26) + (36236) + (1L71L) = (2T727) + (37737) + (TT7TT)$$

- - - - - - - - - - - - - - -(88)

For T: $$(26T26) + (22T22) = (TT7TT) + 2(1TTT) + (TT2T)$$
$$+ (T3T3) + (TLTL) + (TT1TT)$$

- - - - - - - - - - - - - - -(89)

For ^7Li: $$(26L26) = (2L2L) + (TLTL) + (3L3L) + (1L1L)$$

- - - - - - - - - - - - - - -(90)

Although equations (86),(87),(88),(89) and (90) are coupled, the five unknowns (γ_3, γ_2, γ_T, γ_7 and γ_L) can be obtained from the five equations for any T_i provided that the fast reaction rates are known. To calculate the fast reaction probabilities, it is necessary to know all γ values and the electron temperature. To calculate T_e, one must have all γ values, all fast reaction rates, and T_e itself. A self-consistent iteration method is developed to handle the task.

The self-consistent iteration method is a numerical approach to solve for the various γ values, all fast reaction rates, and T_e self-consistently. It consists of 2 inner iteration loops inside a master iteration loop. The calculation is described briefly in the block diagram in Fig. 11.

The character of the energy transfer insures the convergence of the iteration loop which yields T_e and the fast fusion probabilities. However, knowledge of reaction kinetics is required to insure the convergence of other inner iteration loops and the master loop. By design, only a few specific physical parameters are inputs. For example, T_i and γ_6 are the only inputs required for the p-6Li case. The code first prepares all values of S_{eab}
1. Use the fast fusion probabilities of the previous generation (denoted as $P(m-1)$) in the particle balance equations, iterate and obtain a new generation equilibrium species content ratio (denoted as $G(m)$).

2. Use $G(m)$ and T_e of the previous generation (denoted as $T_e(m-1)$) to calculate the fast fusion probabilities. Use $G(m)$ and the fast fusion probabilities in the energy balance equations to calculate T_e. The iteration will yield a new generation value of $P(m)$ and $T_e(m)$.

3. Continue (1) and (2) until G, P, and T_e converge to the degree specified.

Fig. 11
for a given T_i, sets all of the fast reaction probabilities and γ's (except $\gamma_1 = 1$ and γ_6) equal to zero and sets $T_e = 0.75 T_i$. The remaining first generation γ's are then calculated based on the above values. The calculations continue according to the procedure outlined and yield consistent values of the equilibrium species content ratios, fast reaction probabilities, and the electron temperature.

4. Energy balance

The ion temperature and electron temperature in an advanced fuel cycle fusion plasma may reach 500 keV. The relativistically corrected Bremsstrahlung and electron-ion rethermalization formulas must be used in the energy balance equations.

Bremsstrahlung radiative power is given\(^{(7,8)}\) by:

\[P_x = 2.94 \times 10^{-15} n_e^2 Z_{\text{eff}} T_e^{1/2} (1 + \eta) (\text{keV/cm}^3\text{-s}) \] \((91) \)

where

\[Z_{\text{eff}} = \sum_j n_j Z_j^2 / n_e, \] \((92) \)

and the sum extends over all ion species. The relativistic correction factor η is

\[\eta = \frac{2T_e}{m_0 c^2} + \frac{2}{Z_{\text{eff}}} \left(1 - \frac{1}{(1 + \frac{T_e}{m_0 c^2})^2}\right) \] \((93) \)

where $m_0 c^2$ is the rest mass energy of the electron.
The electron-ion rethermalization power is given by

$$P_{ie} = \frac{3 \times 10^{-12} n_e}{T_e^{3/2}} \left(\sum \frac{n_j Z_j^2}{A_j} \right) (T_i - T_e) \delta$$

(94)

where δ is a relativistic correction factor given by

$$\delta = 1 - 0.3 \frac{T_e}{m_0 c^2}$$

(95)

5. Doppler Broadening and Energy Distribution from Nuclear Reactions

The spread in energy of the fusion reaction products results from the spread in energy of the colliding particles in the center of mass frame and the translation of center of mass of the colliding ion pair. Let the velocity relative to the laboratory frame of two species be \vec{v}_1 and \vec{v}_2. The total momentum \vec{P} in the laboratory frame is

$$P = m_1 \vec{v}_1 + m_2 \vec{v}_2 = (m_1 + m_2) \vec{v}_c = (m_3 + m_4) \vec{v}_c$$

(96)

where species 3 and 4 are products of the reaction. \vec{v}_c is the velocity of the center of mass of the reacting pair. Any radiation given off during
the collision or during the compound nucleus state is neglected for the time being.

The energy of the daughter particles (species 3 and 4) in the center of mass frame are related to the energy of initial particles by:

\[E_3^c + E_4^c = E_1^c + E_2^c + Q = E_c^c + Q = \frac{1}{2} \frac{m_1 m_2}{m_1 + m_2} (\bar{V}_1 - \bar{V}_2)^2 + Q \]

(97)

where \(E_j^c \) is kinetic energy of particle \(j \) in the center of mass and \(Q \) is the reaction energy. The energy of the fusion products in the center of mass frame are related by the requirement that:

\[p_{3}^c + p_{4}^c = 0 = m_3 \dot{U}_3 + m_4 \dot{U}_4 \]

(98)

\[E_3^c = \frac{1}{2} m_3 U_3^2 = \frac{1}{2} m_3 (\frac{m_4}{m_3} \dot{U}_4)^2 \]

\[= \frac{m_4}{m_3} E_4^c \]

(99)

Hence the center of mass energy equation gives

\[E_3^c + E_4^c = (1 + \frac{m_3}{m_4}) E_3^c = E_c^c + Q \]

(100)

or

\[E_3^c = \frac{m_4}{m_3 + m_4} (E_c^c + Q) \]

(101)

Since the energy of particle 3 in the center of mass frame is

\[E_3^c = \frac{1}{2} m_3 U_3^2 = \frac{m_4}{m_3 + m_4} (E_c^c + Q) \]

(102)

one has

\[U_3 = \left[\frac{2}{m_3} \cdot \frac{m_4}{m_3 + m_4} (E_c^c + Q) \right]^{1/2} \]

(103)
Hence, the energy of particle 3 in the laboratory frame will be

\[E_3 = \frac{1}{2} m_3 v_3^2 = \frac{1}{2} m_3 \left(\vec{V}_c + \vec{V}_3 \right)^2 \]

\[= \frac{1}{2} m_3 \left(U_3^2 + V_3^2 + 2V_c U_3 \cos \theta \right) \]

(104)

where \(\theta \) is the angle between \(\vec{V}_c \) and \(\vec{V}_3 \).

The angular distribution of a reaction in the energy range of interest could be isotropic in the center of mass frame (such as for the D-T reaction), or anisotropic (such as for the \(p-^6\)Li reaction. See Fig. 12.)

We can rewrite equation (104) in terms of the initial state and the final emission angle \(\theta \) as

\[E_3 = \frac{1}{2} m_3 \left(U_3^2 + V_3^2 + 2V_c U_3 \cos \theta \right) \]

\[= \frac{1}{2} m_3 U_3^2 + \frac{1}{2} m_3 \left(\frac{m_1 \vec{V}_1 + m_2 \vec{V}_2}{m_1 + m_2} \right)^2 + m_3 \left| \frac{m_1 \vec{V}_1 + m_2 \vec{V}_2}{m_1 + m_2} \right| U_3 \cos \theta \]

\[= \frac{m_4}{m_3 + m_4} \left(E_c + Q \right) + \frac{m_3}{(m_1 + m_2)^2} \left[m_1 E_1 + m_2 E_2 + 2 \left(m_1 m_2 E_1 E_2 \right)^{1/2} \cos \xi \right] \]

\[+ \frac{2}{m_1 + m_2} \left[m_1 E_1 + m_2 E_2 + 2 \left(m_1 m_2 E_1 E_2 \right)^{1/2} \cos \xi \right]^{1/2} \left[\frac{m_3 m_4}{m_3 + m_4} \left(E_c + Q \right) \right]^{1/2} \cos \theta \]

(105)

where \(\xi \) is the angle between the velocities \(\vec{V}_1 \) and \(\vec{V}_2 \).

The term \(\frac{m_4}{m_3 + m_4} E_c \) in equation (105) represents an additive contribution that is typically on the order of a few tens of keV's for D-T Maxwellian reactions. It can be on the order of hundreds of keV's for \(p-^6\)Li Maxwellian
Fig. 12 Angular distribution of the p^{-6}Li reaction cross section
reactions. In addition, the variation of E_C is roughly equal to the width of the reaction cross section. The contribution from the motion of the center of mass,

$$\frac{m_3}{(m_1+m_2)^2} [m_1E_1 + m_2E_2 + 2(m_1m_2E_1E_2)^{1/2}\cos\xi]$$

ranges from a few keV to a few hundred keV. The major spread in energy comes from the term

$$\frac{2}{m_1+m_2} [m_1E_1 + m_2E_2 + 2(m_1m_2E_1E_2)^{1/2}\cos\xi]^{1/2} \frac{m_3m_4}{m_3+m_4} (E^{C+Q})^{1/2}\cos\theta$$

since this term is proportional to the product of the relative velocity of the reaction products and the translational velocity of the center of mass.

If there is radiation given off during the collision or during the compound nucleus state, the energy of particle 3 in the laboratory frame can be expressed as in equation (105) provided that E^{C+Q} is replaced by $E^{C} + Q - E_Y$, where E_Y is the radiation energy given off.

In order to derive the energy distribution function of the reaction products, let us consider the ion species 1 with number density n_1 and velocity distribution $f_1(\vec{V}_1)$ reacting with ion species 2 with number density n_2 and velocity distribution function $f_2(\vec{V}_2)$. The reaction rate per unit volume for a process with reaction cross section $\sigma(|\vec{V}_1 - \vec{V}_2|)$ is

$$R = n_1n_2\int d^3\vec{V}_1 d^3\vec{V}_2 f_1(\vec{V}_1)f_2(\vec{V}_2)|\vec{V}_1 - \vec{V}_2|\sigma(|\vec{V}_1 - \vec{V}_2|)$$

(108)

The energy distribution of the reaction products with mass m_3 and energy E_3 can be expressed as
\[
\frac{dR}{dE_3} = n_1 n_2 \int d^3\hat{v}_1 d^3\hat{v}_2 f_1(\hat{v}_1) f_2(\hat{v}_2) |\hat{v}_1 - \hat{v}_2| \frac{d\sigma}{dE_3} \\
= n_1 n_2 \int d^3\hat{v}_1 d^3\hat{v}_2 f_1(\hat{v}_1) f_2(\hat{v}_2) |\hat{v}_1 - \hat{v}_2| \frac{d\sigma}{d\Omega} \frac{d\Omega}{dE_3} \\
= n_1 n_2 \int d^3\hat{v}_1 d^3\hat{v}_2 f_1(\hat{v}_1) f_2(\hat{v}_2) |\hat{v}_1 - \hat{v}_2| \frac{d\sigma}{d\Omega} \frac{d\Omega}{dE_3} \cdot \frac{-d(cos\theta)}{dE_3} \\
= 2\pi n_1 n_2 \int d^3\hat{v}_1 d^3\hat{v}_2 f_1(\hat{v}_1) f_2(\hat{v}_2) |\hat{v}_1 - \hat{v}_2| \frac{d\sigma}{d\Omega} \cdot \left(\frac{-d(cos\theta)}{dE_3}\right) (109)
\]

The term \(\frac{d}{dE_3} (cos\theta)\) can be found from equation (105) and therefore \(\frac{dR}{dE_3}\) can be calculated, provided \(\frac{d\sigma}{d\Omega}\) is given. Equation (109) can also be used for both elastic and inelastic scattering processes.
CHAPTER III

REFERENCES

3. S. T. Butler and M.J. Buckingham, Phys. Rev. 126 ('62) 1
5. J. J. Devanly and M.L. Stein, Nucl. Sci and Eng. 46 ('71) 323
6. W. A. Houlberg, UWFDM 103 ('74)
IV. Advanced fuel cycle burn kinetics code

The advanced fusion fuel cycle analysis requires a time dependent burn kinetics code to follow the many reactions that can be involved, including subtle effects like two component fusions, nuclear elastic and inelastic scattering, Doppler broadening of the energy distribution of reaction products, and the fraction of slowing down energy given separately to the ions and electrons. In addition, advanced fuel cycles are likely to operate at ion temperatures approaching 300 keV and electron temperatures in excess of 100 keV. As such, a careful calculation of relativistic bremsstrahlung losses and of synchrotron radiation is required.

The next sections describe existing fusion burn codes and modifications we intend to develop.

1. Overview of the State-of-the-Art

The burn codes developed to date have all been specialized to answer specific questions about the burn dynamics under rather simple burn conditions.

(1) The University of Illinois

Some six different burn codes (Table 6, developed at the University of Illinois are focused on fuels containing D, T and 3He. Most of these codes are designed for the analysis of steady-state burns. Start-up scenarios can be examined using the "start-up code" but here again the scope of reactants is very restricted.
<table>
<thead>
<tr>
<th>Code Checklist</th>
<th>Tokamak Global</th>
<th>Bumpy Torus</th>
<th>SAFFIRE (FRM)</th>
<th>A-FLINT (pellet)</th>
<th>Startup (FRM)</th>
<th>Startup (Tokamak)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fusion Reactions included</td>
<td>Cat D, D-He³, D-He³ breeder</td>
<td>D-T, Cat D, D-He³</td>
<td>D-T, D-D, Cat D, D-He³</td>
<td>D-T, all D-D</td>
<td>Cat D, D-T, D-He³, D-D</td>
<td></td>
</tr>
<tr>
<td>Time dependance</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Heating and refueling model</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Bremsstrahlung</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Cyclotron</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Diffusion & Conduct</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Energy dep. from fast fusion products:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coulomb</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Nuclear</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Fusion Multip.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Applications:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Burn Dynamics</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Spectrum of power</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Documentation</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Availability</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Running Cost</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Documentation & Availability of Results</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Interest in generating new results</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

Table 6 - Checklist of Codes, Modelling Fusion Approaches (University of Illinois)
(2) The ECF Code

The ECF Code at Oak Ridge is now capable of handling over 30 different fusion reactions. It handles fusion power multiplication from fast ions and nuclear elastic scattering as linear processes. The relaxation of fast particles by Coulomb or nuclear elastic collisions is treated assuming the background thermal plasma to be stationary during the slowing-down of the fast particles. This is not appropriate in those situations in which the evolution of the plasma parameters is faster than the relaxation times of fast particles. The code is however adequate for establishing the conditions of a mild steady-state thermonuclear burn.

(3) The FOKN Code

The FOKN Code\(^{(3,4)}\) developed at LLL, is the only fully non-linear burn code. This code solves for the time-evolution of the full velocity distribution function of the various reactants. The linear approximation, i.e., the assumptions that the velocity distribution function is made up of a Maxwellian bulk with a small tail of energetic particles is dispensed with. The full details of the time-evolution of this distribution are also available which makes possible the exploration of intense thermonuclear burns and rapid start-up scenarios. This code also includes the details of the effects of nuclear elastic collisions, synchrotron radiation and bremsstrahlung on the shapes of the distribution functions.
The major drawbacks of this code are:

The level of its detail makes it very expensive to run.
The reactions associated with lithium and beryllium have not yet been included.

(4) The University of Wisconsin Code

The University of Wisconsin Code\(^{(5)}\), a blend of the Oak Ridge ECF and the Livermore FOKN codes, treats all of the reactions included in the ECF code and more. The slowing-down of fast particles is handled by a linear multigroup technique which allows an inexpensive modeling of the time-dependence of fast particle slowing-down processes. At the high energies that fast fusion products normally have, energy diffusion is usually not too important and can be ignored.

(5) Summary

The preceding summary review of existing codes suggests that, for greatest accuracy regardless of price, the most reliable approach to an advanced fuel burn code is to expand the Livermore FOKN code which already includes most of the relevant physical effects but does not yet include reactions involving lithium and beryllium. Such a code would be invaluable in refining the conclusions of simpler and less expensive codes which already include most of the relevant reactants and fusion reactions.
The Oak Ridge ECF Codes are the most appropriate ones for near term exploratory work. Results from this code should be firmed up by an expansion of the University of Wisconsin Code which when completed will be intermediate in physics content between the ECF and the FOKN codes. As noted earlier, such an expanded code will allow a more reliable analysis of fast start-up scenarios at a cost still much smaller than the FOKN Code would allow. The expansion of the Wisconsin Code is proposed in the next section.

2. Outline of the Proposed Advanced Fuel Cycle Burn Kinetics Code

In this section, we describe in some detail the features we intend to develop for inclusion in an advanced fuel cycle burn kinetics code. As part of our present work, several features have already been developed. We will indicate where work has either begun or is completed and where future work is required. To illustrate why various features of the proposed code are required, we will use the $p + ^6\text{Li}$ cycle as the particular example.

Primary Reactions

\[
\begin{align*}
p + ^6\text{Li} & \rightarrow ^3\text{He} (2.3 \text{ MeV}) + ^4\text{He} (1.7 \text{ MeV}) & (110) \\
^3\text{He} + ^6\text{Li} & \rightarrow p (11.3 \text{ MeV}) + ^2^4\text{He} (2.81 \text{ MeV}) \\
& \quad + D (0.4 \text{ MeV}) + ^7\text{Be} (0.1 \text{ MeV}) & (111) \\
& \quad + p + n + ^7\text{Be} & (112) \\
\end{align*}
\]

Secondary and Tertiary Reactions:

\[
\begin{align*}
& \{ + n + ^7\text{Be} (.42 \text{ MeV}) \\
& \quad + p (4.4 \text{ MeV}) + ^7\text{Li} (.63 \text{ MeV}) \\
D + ^6\text{Li} & \rightarrow p (1.6 \text{ MeV}) + T + ^4\text{He} & (114) \\
& \quad + n + ^3\text{He} + ^4\text{He} \\
& \quad \rightarrow ^2^4\text{He} (11.2 \text{ MeV}) \\
\end{align*}
\]
\[
\begin{align*}
D + ^3\text{He} & \longrightarrow p \ (14.6 \text{ MeV}) + ^3\text{He} \ (4.7 \text{ MeV}) \\
D + D & \longrightarrow p \ (3 \text{ MeV}) + T \ (1 \text{ MeV}) \\
D + ^7\text{Be} & \longrightarrow p \ (11.2 \text{ MeV}) + ^2\text{He} \ (2.8 \text{ MeV}) \\
D + T & \longrightarrow n + ^4\text{He} \ (3.5 \text{ MeV}) \\
T + ^3\text{He} & \longrightarrow D \ (9.6 \text{ MeV}) + ^4\text{He} \ (4.8 \text{ MeV}) \\
^3\text{He} + ^3\text{He} & \longrightarrow 2p \ (5.7 \text{ MeV}) + ^4\text{He} \ (1.4 \text{ MeV}) \\
^3\text{He} + ^7\text{Be} & \longrightarrow 2p \ (4.5 \text{ MeV}) + ^2\text{He} \ (1.1 \text{ MeV}) \\
T + ^7\text{Be} & \longrightarrow p \ (4.2 \text{ MeV}) + n + ^2\text{He} \ (1.1 \text{ MeV}) \\
D + ^7\text{Li} & \longrightarrow n + ^2\text{He} \ (2.521 \text{ MeV})
\end{align*}
\]

In addition there are least thirteen $^6\text{Li} + ^6\text{Li}$ exothermic reactions which produce all elements from H to ^{12}C and produce neutrons. Many of the fusion reaction products are energetic and may react with elements in the background plasma prior to complete slowing down (fast fusion or two-component fusion events). Including these fast fusion events is crucial, particularly for cycles that are either propagating or chain events. Some important fast fusion reactions in the $p-^6\text{Li}$ cycle (the fast particle has a bar over the element's designation) include:

\[
\begin{align*}
\begin{cases}
\bar{p} + ^6\text{Li} + ^3\text{He} + \alpha \\
\bar{p} + ^6\text{Li} + ^3\text{He} + 2\alpha \\
\bar{p} + ^6\text{Li} + ^3\text{He} + \alpha
\end{cases} & \quad (124) \\
\begin{cases}
\bar{p} + ^6\text{Li} + ^3\text{He} + \alpha \\
\bar{p} + ^6\text{Li} + ^3\text{He} + \alpha
\end{cases} & \quad (125)
\end{align*}
\]
\[
\begin{align*}
\bar{p} + ^6\text{Li} & \rightarrow ^3\text{He} + ^3\text{He} + \alpha \\
& \begin{array}{c}
\begin{array}{c}
^3\text{He} + ^6\text{Li} \rightarrow \bar{D} + 7\text{Be} \\
\bar{D} + ^6\text{Li} \rightarrow \bar{p} + 7\text{Li} \\
\bar{p'} + ^6\text{Li} \rightarrow ^3\text{He} + \alpha \\
\end{array}
\end{array}
\end{align*}
\]

(126) \quad (127)

and there are many others. As such, there is a high premium placed on the very efficient numerical approach to the treatment of slowing down of fast fusion products. We have developed such an efficient procedure for implementation in the code.

With so many reactions involved, other subtle issues arise which we should point out. In general, it is difficult, a priori, to establish a criterion for the inclusion or rejection of a particular reaction channel. First, while the values for \(\langle \sigma v \rangle \) and \(Q \) are known, the density of each species in the plasma is not known. Thus, the fusion reaction rates are unknown. Second, the temperature may vary widely during a burn, so that almost all reactions may at some time be influential. For an initially self-consistent model, all reactions with comparable \(\langle \sigma v \rangle \) or \(\langle \sigma v \rangle Q \) values should be incorporated. Only parameter studies at a later time will determine whether specific reactions are important in the simulation process. At that point, those which do not affect the results in a significant way will be eliminated.

Another issue involves the techniques used to handle a problem with so many reaction channels and associated time constants. Two standard approaches are:

(A) Write many small codes, each of which solves a specific, limited problem. This is inconvenient since there may be many combinations of reactions of
interest. This approach makes it difficult to perform parametric studies which are required since the inclusion or deletion of a particular reaction channel requires that a new code be written. The University of Illinois burn code has been of this type.

(B) Write one large code incorporating all possible reaction channels in such a way as to be selective with respect to which reactions are included for a particular case. This approach poses a severe problem with respect to execution speed because the straightforward approach is to set switches in code to include or ignore certain selected reactions. This is usually accomplished by means of costly "if" statements. Since $\geq 10^6$ evaluations may be required per run, the time spent trying to speed-up the code by selecting reactions may actually make running time longer. Because of the execution time associated with "if" statements, the two codes which currently incorporate "all" possible reactions (namely the ECF code at Oak Ridge and the FOKN Code at LLL) calculate each reaction channel without any selection scheme. The execution time of these codes can be excessive and they do not easily lend themselves to parametric studies.

A solution being pursued by U.W.-Madison code involves the use of certain compiler characteristics to replace "if" statements. This can lead to a fast flexible code which can be used for both simple problems and the most complex. Using these features of "intelligent compilers", the U.W.-Madison simulation code can be made very general in scope and fast in speed. In addition, the same compiler characteristics facilitate the required parametric studies.
With this background, the general features to be included in such an advanced fuel burn kinetics code will be described in the next section.

(1). Basic Equations of the Point Kinetics Burn Code

The basic equations are the particle balance, the energy balance, the fusion reactions induced by energetic particles, the slowing down of fast particles by Coulomb and nuclear elastic collisions and Doppler broadening effects. Since particles are present with energies from thermal to the initial energy of production, the most efficient approach to handling the dynamics is to employ a multigroup energy technique. This approach has already been implemented in a limited way in the present version of our code.

Particle Balance

The evolution of the density of a given specie \(j \) is

\[
\frac{dn_j}{dt} = \text{beam source (if any)} + \text{slowing down rate from fast adjacent group} + \text{production rate from nuclear reactions} - \text{slowing down rate to next adjacent group} - \text{consumption rate in nuclear reactions} - \text{confinement loss}
\]

where \(j = 1, 2, 3, \ldots \) represent, for example, \(e^- \), \(p \), \(D \), \(T \), \(^3\text{He} \), \(\alpha \), \(^6\text{Li} \), \(^7\text{Li} \), \(^7\text{Be} \), etc. In this multigroup approach the particle balance is affected by the energy balance detailed next. The fusion production and consumption rates also must be averaged over the energy populations of the other reactants.

Energy Balance

The dominant slowing-down process is by Coulomb scattering and the energy loss rate is given by

\[
\frac{dE}{dt} = - (8\pi)1/2 \left(\frac{Ze^2}{4\pi\varepsilon_0} \right)^2 \sum_j \frac{Z_j^2 N_j \lambda_n \Lambda_j F(V_j)^{V_j}}{M_j V_j}
\]

(128)
\[
F\left(\frac{V}{V_j}\right) = \frac{V_j}{V} \left(\int_0^1 e^t dt^2 \frac{V/V_j}{M_j} \right) - (1 - \frac{M_j}{M}) e^V/V_j^2
\]

(129)

E, M, A, and V are the energy, mass, atomic number, and speed of the fast particle whereas \(n_j, T_j, M_j, Z_j \) and \(V_j \) are the density, temperature, mass, atomic number and speed, respectively, of the background plasma specie. Nuclear elastic and inelastic scattering reactions are also important and are included in the multigroup approach as

\[
\frac{dn_k}{dt}\bigg|_{\text{nuclear}} = \text{gain through scattering} - \text{loss through scattering}
\]

\[
= \sum j \int_{E_k}^{E_j} \int_{E_{kj}}^{E_{ko}} n_j V_k \sigma_{kj} \left(E_i, E_f\right) dE_i f(E_i)
\]

\[
- \sum e \int_{E_{ko}}^{E_{ej}} f(E_f) dE_f \int_{\alpha E_{kj}}^{\alpha E_{ko}} \left(E_i, E_f\right) dE_i
\]

(130)

As is done in the FOKN code, these scattering terms include multidimensional integrals which can be evaluated once as transfer matrices prior to a computational run and tabularized.

The evolution of the temperature of the thermal background is obtained from the equations

\[
\frac{d}{dt} \sum_j \left(\frac{3}{2} n_j T_j \right) = \text{heating rate by fast particles (Coulomb and nuclear)}
\]

\[
- \text{heat loss to electrons}
\]

\[
- \text{confinement losses} \left(\frac{3}{2} \frac{n_j T_j}{\tau_{Ej}} \right)
\]

(131)

\[
\frac{d}{dt} \left(\frac{3}{2} n_e T_e \right) = \text{heating by fast ions}
\]

\[
- \text{confinement losses} \left(\frac{3}{2} \frac{n_e T_e}{\tau_{Ee}} \right)
\]

(132)

- radiation losses
At present, radiation losses from the electrons include the standard relativistically correct estimates for bremsstrahlung as well as a crude model of synchrotron radiation losses. The latter is difficult to do accurately but a black body level up to a critical harmonic number should be adequate pending more accurate results of a geometry dependent calculation proposed elsewhere.

(2). Treatment of Fast Fusion Events

The fast charged particles undergo coulomb collisions with the background plasma. The energy of the particle is lost to the cooler target and the expression for the rate of energy loss is given in eqn. (128). Let \(\sigma(\mathbf{V} - \mathbf{V}_j) \) be the reaction cross section for a fast charged particle of velocity \(\mathbf{V} \), on a background plasma specie \(j \) of velocity \(\mathbf{V}_j \). Assuming that the background plasma specie \(j \) has a velocity distribution \(f(\mathbf{V}_j) \) and that \(\int f(\mathbf{V}_j) d^3\mathbf{V}_j = 1 \), the probability of a fast particle slowing down from \(E_{\mathcal{E}+1} \) to \(E_{\mathcal{E}} \) and reacting with plasma specie \(j \) is given by:

\[
\int_{E_{\mathcal{E}+1}}^{E_{\mathcal{E}}} n_j \sigma(\mathbf{V} - \mathbf{V}_j) f(\mathbf{V}_j) d^3\mathbf{V}_j \frac{dt}{dE_f} dE_f \ldots
\]

(133)

where \(E_f = \frac{1}{2}MV^2 \) and \(\frac{dt}{dE_f} \) is the total rate of energy loss of the charged particle via coulomb collisions. The integration of the reaction probability involves the evaluation of \(\frac{dt}{dE_f} \) which depends on \(E_f \), \(n_j \), \(T_i \) and \(T_e \) (especially \(E_f \), \(n_e \) and \(T_e \)). Therefore, it must be performed at each time step (of the calculation of the density energy balance equations).

A fast particle can undergo any of a large number of different reactions; e.g. \(\bar{\mathcal{D}} + D \rightarrow n + ^3\text{He}, \bar{\mathcal{D}} + D \rightarrow P + T, \bar{\mathcal{D}} + T \rightarrow n + \alpha, \bar{\mathcal{D}} + ^3\text{He} \rightarrow P + \alpha, \bar{\mathcal{D}} + ^6\text{Li} \rightarrow 2\alpha, \bar{\mathcal{D}} + ^6\text{Li} \rightarrow P + T + \alpha, \bar{\mathcal{D}} + ^6\text{Li} \rightarrow n + ^3\text{He} + \alpha, \bar{\mathcal{D}} + ^6\text{Li} \rightarrow n + ^3\text{He} + \alpha, \bar{\mathcal{D}} + ^6\text{Li} \rightarrow P + 7\text{Li}, \bar{\mathcal{D}} + ^6\text{Li} \rightarrow n + 7\text{Be}, \bar{\mathcal{D}} + 7\text{Li}, \bar{\mathcal{D}} + 7\text{Be}, \) etc. Including the fast events is crucial, particularly for cycles that are either propagating or chain events.
For these reasons, it has been thought that an advanced fuel cycle burn kinetic code would be prohibitively expensive if one calculates fast fusion probabilities to the required accuracy. We have developed a method around this difficulty.

The reaction probability is

\[
\text{Reaction probability for particle slowing} = \sum_{j=1}^{K} n_j \int_{E_j}^{E_{j+1}} \sigma(|\vec{v}_k - \vec{v}_j|) f(\vec{v}_j) d^3\vec{v}_j \frac{dt}{dE_f} dE_f - \Delta E
\]

where \(\Delta E = \frac{E_{j+1} - E_j}{K}\), \(E_k = E_j + k\Delta E = \frac{1}{2} M V_k^2\).

After tedious algebra, it can be shown that if \(f(\vec{v})\) is the Maxwellian distribution, then

\[
SVB(E_k) = \langle \sigma v \rangle_b = \int |\vec{v}_k - \vec{v}_j| \sigma(|\vec{v}_k - \vec{v}_j|) f(\vec{v}_j) d^3\vec{v}_j
\]

\[
= \frac{2W_j e u^2}{\sqrt{\pi}} \int_0^\infty x^2 \exp(-x^2) \sinh(2ux) \sigma(xW_j) dx
\]

where \(u = V_k/W_j\), \(x = |\vec{v}_k - \vec{v}_j|/W_j\), \(W_j = \sqrt{\frac{2kT_j}{M_j}}\).

It is clear that \(\langle \sigma v \rangle_b\) is a function of \(E_k\) and \(T_i\). Fortunately, it is relatively insensitive to \(T_i\). We can also define

\[
\Delta t(E_k, n_e, T_e) = -\frac{\Delta E}{\Delta E_f} \bigg|_{E_f = E_k}
\]
This function is very sensitive to \(E_k \), \(n_e \) and \(T_e \), but is not sensitive to the ion temperature, or density. Using these expressions, eqn. (134) becomes

\[
 n_j \sum_{k=1}^{K} SVB(E_k) \Delta t(E_k, T_e, n_e)
\]

(137)

with \(E_k = E_{\alpha} + k \Delta E \), \(\Delta E = \frac{E_{k+1} - E_k}{k} \).

From the preceding discussion, it can be seen that there are three independent quantities to calculate: (1) \(n_j \), which is given by the particle balance equation at each time step; (2) \(SVB(E_k) \), which is relatively constant in time and can thus be calculated once for many time steps; and (3) \(\Delta t \), which has to be calculated in each time step. Since it has been shown that the reaction rate can be considered to be independent of the rate of energy loss, the calculation will be much simpler, and can be done at an acceptable computing cost.

The UW code can handle up to 39 different Maxwellian fast fusion reactions. The code includes: (a) main and control subroutines; (b) subroutines to solve particle balance equations; (c) subroutines which calculate fast fusion probabilities and the slowing down time of fusion products; (d) subroutines to solve the energy balance equations; (e) subroutines to store the results and print out the output; (f) a subroutine to plot the output. In addition a special command has been used to allow fortran statements to be inserted into the code such that one can easily set up the cases for study by following the instructions step by step as stated in the subprogram to change the fortran statements in that subprogram. The special command will then insert the appropriate statements in the proper place in the program.
A block diagram of the code as it exists with the additions to be made is shown in Fig. 13. Among these subroutines, the more important are:

(a) Main and Control Subroutines:
 ASYFUL, SETUP, CALCUL, BLOCK, STORE, PRNOUT

(b) Slowing down and fast fusion of subroutine
 SLODON, TWOCOM, SIGMV B, GETCS, XSFORM, XSP7LI, XSP6LI, NIROOT.

(c) Particle Balance Equation Subroutines:
 CALCUL, EQUA, KUTTA, SIGMAV

(d) Energy Balance Equation Subroutines:
 FI, BEAMRF, GETSET, PTIEQT, PTIEQT, TIEQTN, TEEQTN

(e) STORAGE AND PRINT OUT SUBROUTINES:
 STORE, ELT, PRNOUT, TABLE

(f) PLOTTING SUBROUTINES:
 RECPLOT, PLOT, SPLOT

The present version of the code is written in Fortran V and operates on the UNIVAC 1110.

A self consistent steady state version of the code has already been implemented to search for the equilibrium content of the various species in a steady advanced fuel cycle burn. A self consistent method has been derived to calculate the equilibrium contents of p^{-6}Li fuel, p-D^{-6}Li fuel, etc. for various approximate treatments of the p^{-6}Li cycle. The code successfully gives the equilibrium contents of the fuel, calculates the relative power density, neutron production, average neutron energy and so on. We can then search for the self consistent electron temperature, given T_e,
 BLOCK DIAGRAM FOR ADVANCED FUEL CYCLE BURN KINETICS CODE

ADVFUL (main)

Set up
Calculation
Store
print
Plot

KUTTA
(control the
time step)

<σv>

Maxwellian
reaction
rates

Slowing down
rate of the
fast ions

Fast fusion
probabilities

<σv>

Via coulomb
scatterings

Via nuclear
elastic
scatterings

Via nuclear
inelastic
scatterings

Energy
balance
equations

energy distrib. of fast fusion products

Particle balance
equations

T_f & T_e
densities of particles

more reactions will be included

code will be developed

Fig. 13 The Wisconsin Advanced Fuel Cycle Burn Kinetics Code
to determine a solution consistent with electron drag and bremsstrahlung losses to calculate the ratio of fusion power to radiative losses. A number greater than one implies ignition at infinite \(n_e \). We can then determine the energy amplification factor as a function of \(n_e \) in equilibrium.

4. Outputs/Summary

The most important outputs of the code are the time history of the density and energy of the various species. The level of radiation losses, charged particle losses, ash removal, as well as the neutron emission (and its spectrum) are also important outputs of the calculation.

The development of this code is now underway at the University of Wisconsin. It is a substantial bookkeeping task in which the reliability of each component calculation must be checked carefully.

When completed, this advanced fuels fusion dynamics code will be a complete, zero dimensional, time-dependent treatment of burn kinetics. It will provide a reasonably inexpensive means of quantitatively evaluating advanced fuel fusion and making a reasonable selection of the most promising confinement concept in which an optimized fuel mixture can be brought to ignition and produce power.
CHAPTER IV

REFERENCES

1. G. H. Miley, et al., Private communication
3. UCID-17196, Documented by Terry Chu, July, 1976
5. R. Conn and G. Shuy, UWFDM 262, 1978 and private communication
V. Preliminary Results of The Advanced Fusion Fuel Cycle Analysis

and Proposed Studies

The effect of propagation and large energy transfer collisions has been shown to be important not only for the catalysed d-d cycle described in chapter I, but also for many other cycles such as p-11B, p-6Li, d-3He, d-6Li.

For the p-11B reaction, the resulting increase in <σv> due to propagating and large energy transfer effects relative to the Maxwellian averaged value is shown in Fig. 14. When this is included in an energy balance calculation, it is found that the p-11B cycle can ignite if the losses are due solely to bremsstrahlung (as opposed to previous studies (1-3) which neglecting these effects showed the maximum Q is less than 3). Using appropriate relativistic formulae for bremsstrahlung and electron-ion rethermalization, the results are summarized in Table 7. Thus, by including propagation and large energy transfer collisions, the prospects for a minimum neutron production cycle have brightened.

Table 7

<table>
<thead>
<tr>
<th>T\textsubscript{i}(keV)</th>
<th>T\textsubscript{e}(keV)</th>
<th>M = \frac{FUSION POWER}{BREM. POWER}</th>
<th>Q = \frac{FUSION POWER}{INPUT POWER}</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>135</td>
<td>0.83</td>
<td>4.88</td>
</tr>
<tr>
<td>250</td>
<td>150</td>
<td>1.00</td>
<td>∞(Ignition)</td>
</tr>
<tr>
<td>300</td>
<td>160</td>
<td>1.18</td>
<td>∞(Ignition)</td>
</tr>
</tbody>
</table>
ENERGY MESH - 100 keV

\(p = ^{11}B \text{ FUEL CYCLE} \)
\(\bar{n}_B / n_p = 0.1 \)
\(T_i = 250 \text{ keV} \)
Since we have seen, by the previous example, that the effects of propagation and large energy transfer collisions are important, we propose developing a model for advanced fusion fuel cycles which incorporates the relevant physical processes in order to evaluate the potential of advanced fuels in future fusion devices. We will

1. Investigate how much these processes affect n_T requirements for Lawson and ignition conditions or the energy multiplication factor Q, using several models for energy containment time.

2. Utilize the time dependent advanced fusion fuel cycle burn kinetics code to investigate optimum fuel mixture, energy amplification factors, neutron yields, n_T requirements, startup scenarios, ash removal requirements and sensitivity of the burn dynamics to data uncertainty.

References for chapter V

2. J. G. Cordey, lecture.2. Course on theory of Magnetically Confined Plasmas (Varenna, Italy) Sept. 1977