Steady-State D\(^3\)He Proton Production in an IEC Fusion Device

October 2000

UWFDM-1144

Presented at the 14th Topical Meeting on the Technology of Fusion Energy, October 15–19, 2000, Park City UT
ABSTRACT

Inertial electrostatic confinement of ions has been successfully used to achieve conditions necessary for the fusion of advanced fuels, such as \(^3\)He. This type of device at the University of Wisconsin was the first to produce steady-state D\(^3\)He fusion, and has since produced up to \(7 \times 10^6\) 14.7 MeV proton/s from the D\(^3\)He fusion reaction. The factors influencing the reaction rate and the experimental results are discussed.

I. INTRODUCTION

The fusion reaction,

\[
D + ^3\text{He} \rightarrow p (14.7 \text{ MeV}) + ^4\text{He} (3.7 \text{ MeV})
\]

produces high-energy protons that are potentially very useful in a number of applications. The production of short-lived medical isotopes on-site, such as \(^{15}\)O or \(^{18}\)F requires a device that can produce protons above 3 MeV and would benefit significantly from being portable.\(^{1-3}\) Fusion power production using advanced fuels has much less of a problem with neutron activation and may be able to use direct energy conversion.\(^4\) Space propulsion requires a low mass power plant without the requirement for large amounts of shielding. All applications benefit greatly by the ability to run in a steady-state mode. The IEC device has produced advanced fuel fusion and shown substantial progress in increasing the reaction rate.\(^6\)\(^-\)\(^9\)

II. THEORY OF OPERATION

Gridded inertial electrostatic devices rely on the radial acceleration of charged particles between concentric, nearly transparent electrodes (Figure 1).\(^10\)\(^-\)\(^16\) For typical grid spacing of 0.1-1 m, 10's-100's of kV can be sustained between the grids, and the energy of ions accelerated by such potential differences leads to substantial fusion cross sections. A key benefit of IEC fusion lies in the relative ease of achieving high-energy ions compared to producing high temperatures in Maxwellian plasmas, where much of the input energy sustains relatively useless low-energy ions and electrons. The difficulty with IEC fusion stems from space-charge effects that limit the plasma density to low values except near the center of the device, where radial focusing gives very high density in a small volume. Unresolved questions also exist regarding sustaining the IEC core against collisions.\(^17\)\(^-\)\(^20\) A gridless IEC variant, called the Polywell\(^\text{TM}\), invokes magnetostatic containment of injected high-energy electrons in a cusped magnetic field to form the electrostatic well.\(^21\) Another type of IEC uses cylindrical grid geometry, which can create a linear converged core.\(^13\)

Achieving a highly converged core remains an eventual goal that probably will be necessary for high-Q (fusion power/input power) operation. The present gridded IEC experiment, however, operating in a somewhat different mode, generates fusion protons and neutrons at relevant levels for creating radioisotopes applicable to nuclear medicine. In this mode, the background neutral gas pressure is relatively high, typically a few mtorr. The mean free path of an accelerated ion against charge exchange at these pressures is on the order of or somewhat larger than the device dimensions. A typical ion then passes one to a few times through the core before charge exchanging with a cold neutral, but the ion usually charge exchanges before it fuses with another ion in the core or collides with a grid wire.

The three fusion reactions that have been studied in an IEC device are D\(^3\)He (Eq. 1), DD (Eq. 2), and D-T (Eq. 3).\(^22\)
\[D + D \rightarrow ^{3}\textit{n} (2.5 \text{ MeV}) + ^{3}\textit{He} (0.8 \text{ MeV}) \quad 50\% \quad (2) \]

\[\rightarrow ^{4}\textit{H} (3 \text{ MeV}) + T (1 \text{ MeV}) \quad 50\% \]

\[D + T \rightarrow ^{3}\textit{n} (14.1 \text{ MeV}) + ^{4}\textit{He} (3.5 \text{ MeV}) \quad (3) \]

Figure 2 shows the reaction rates for fusion in the converged core ($D^{+1} + D^{+1}$ and $D^{+1} + ^{3}\textit{He}^{+1}$) and for fusion by a charge-exchange (CX) neutral on the background gas.

III. THE WISCONSIN IEC EXPERIMENTAL FACILITY

The facility (Figure 3) consists of a 91 cm diameter cylindrical aluminum vacuum chamber, which is 65 cm tall. This is the same chamber described in earlier work.23-25

A 450 l/s turbo pump pumps the chamber down to a base pressure of 2×10^{-7} torr. The inner cathode is a 10 cm diameter coarse grid sphere of 0.8 mm tungsten wire supported on a 100 kV vacuum feedthrough. The tungsten construction of the inner grid has allowed operation at input power levels exceeding 8.5 kW without failure. Normal operating voltages range from -25 to -70 kV at 30-150 mA. The power supply used in the present experiments can deliver 75 kV. The outer anode grid is 45 cm in diameter made of stainless steel wire that can be biased with variable amplitude AC and DC voltages. The variable AC bias is used to control the ionization of the fuel gas, which in turn controls the current to the cathode grid. This allows far better control of the ion current and produces a more uniform, higher level of ionization compared to previously used filament ion sources.23-25 Electronically controlled gas flow regulators adjust the fuel flow ratio and amount into the system. A remote controlled throttle on the turbo pump is used to control the operating pressure of the gas mix. A Residual Gas Analyzer (RGA) is used to monitor the ratio of the fuels present as well as impurity levels.

Figure 3. The Wisconsin IEC chamber.
The DD and D^3He reactions produce a steady stream of neutrons, protons, electrons, helium-4 and tritium ions, gammas, and x-rays. The diagnostics currently in use detect the 2.45 MeV neutron from the D-D reaction, the 3 MeV proton from the D-D reaction, and the 14.7 MeV proton from the D^3He reaction. The proton detector used is a Canberra Passivated Implanted Planar Silicon (PIPS) Detector. It is mounted inside a 6 cm diameter water-cooled tube on the side of the chamber 80 cm from the center. This solid-state silicon detector has an active area of 1200 mm^2 and a depletion region thickness of 700 µm. This thickness allows both the 3 MeV proton and the 14.7 MeV proton to be detected at the same time. A 25 µm thick lead foil is placed in front of the detector to block x-rays and alpha particles, which create unwanted signals in the detector. The detected energy levels of the protons after they pass through the lead are calculated using stopping powers tabulated in the National Institute of Standards and Technology’s PSTAR database shown in Figure 4. The measured proton peaks corresponds closely to the calculated values of 1.9 MeV and 5 MeV.

A helium proportional counter neutron detector, placed 90 cm from the center, is used to detect the low-energy neutrons from the D-D reaction. It is mounted outside the chamber in a container of polyethylene to thermalize the neutrons.

The neutron detector was calibrated by placing a Pu-Be source of 2.18 x 10^6 n/s inside the chamber. Although it is expected that the fusion reactions produce a volume source of neutrons, the Pu-Be source is a point source. However, mathematical modeling shows that the detected neutron rate difference between a volume and a point source would be only 5% for the neutron detector.

The proton detector was checked using a ^241Am alpha source to determine its efficiency and energy peak location on the multi-channel analyzer. Correction factors were determined by calculating its solid angle view of the volume source of protons. Both the neutron and proton detectors, with their associated signal conditioners, provide a continuous readout of the count rate during the steady-state operation.

IV. EXPERIMENTAL RESULTS

The main factors that affect the fusion reaction rates that have been studied are the fueling conditions and the geometry and biasing of the grids. The inner grid potential has the most influence on the reaction rate. The rate has a near exponential dependence on the voltage, as seen in Figure 5. This is due to the exponential cross-section dependency on the kinetic energy.

![Figure 5. The rate of DD fusion reactions increases rapidly for modest increases in cathode voltage.](image)

The highest steady-state D-D fusion neutron rate achieved was 4.9x10^7/s at 55 kV, 117 mA. This amounts to ≈ 10^8 DD reactions per second. The reaction rate has a near linear dependency on the current at moderate pressures and grid potentials.

![Figure 6. Fusion product rates vs. grid bias.](image)

The D-D fusion reaction produces an equal number of 3 MeV protons and 2.45 MeV neutrons, so the detected rates of the protons and neutrons should be equal. The calibration depends on the proper
calculation of the volume source in the truncated cone that the proton detector sees plus the cylindrical source of neutrons throughout the whole chamber. The fact that the calibrated rates are similar (Figure 6) confirms the volume source, charge exchange conditions.

Using a mixture of deuterium and 3He gas to produce D3He fusion, D-D fusion also takes place, producing 3 MeV protons along with the 14.7 MeV protons. The simultaneous detection of both of these protons is a valuable diagnostic, providing a measurement of the ratio between the D3He and D-D fusion reactions that occur (Figure 7). At this grid voltage level, noise due to x-rays is starting to add to the D-D proton counts. It also clearly shows that the D3He proton rate has surpassed the D-D proton rate.

This reaction ratio must be optimized to increase the production of 14.7 MeV protons. D3He fusion can occur when a fast D ion or charge exchanged neutral hits a 3He neutral, or a fast 3He ion or charge exchanged neutral hits a D neutral. Deuterium is easier to ionize than helium-3, so the probable reaction occurs when a fast D ion or neutral hits a D or 3He neutral.

As expected, the ratio of the two gas fuels has an influence on the reaction rates (Figure 8). This data set, recorded with the use of a RGA to monitor the fuel ratios, indicates that a 3He to D ratio of 1 is optimal. Higher ratios would have a reduced density of deuterium ions, while a lower ratio would have a reduced density of helium-3 targets.

The other main factor influencing the ratios of the reaction rates is the reaction cross section for a given kinetic energy of the ions. At higher energies, the D3He cross-section exceeds the D-D value. Therefore, the D3He to D-D reaction ratio should increase with increasing cathode voltage, which is confirmed by the experimental data in Figure 9. Comparing Figures 2 and 9 shows that the measured D-D to D3He reaction rate ratio is consistent with the dominance of charge-exchange neutrals fusing with background neutrals over converged-core fusion.

![Figure 7. The energy deposited by D-D and D3He protons in the Si detector agrees with theory.](image-url)
Figure 8. Fuel ratio vs. proton production.

Figure 9. Fusion product rates vs. grid bias.

Figure 10. History of D^3He proton production.

The University of Wisconsin's IEC reactor was the first to achieve steady-state D^3He fusion and has made great progress in increasing the production of protons from the D^3He reaction (Figure 10). The current record steady-state 14.7 MeV proton production is 7 x 10^6 protons/s at 70 kV, 30 mA.

V. CONCLUSIONS

Experiments at the University of Wisconsin Fusion Technology Institute have been successful in creating record steady-state D^3He fusion using its IEC fusion device. This fusion reaction, using the advanced fuel D^3He, produces 14.7 MeV protons that can be used in a variety of applications. Substantial progress in the fusion reaction rate of D^3He has been achieved, currently at 7 x 10^6 protons/s, as well as D-D fusion reaction rates. The fusion of other advanced fuels will be explored.

ACKNOWLEDGEMENTS

The authors would like to acknowledge that the FINDS Foundation, the Grainger Foundation, and Dr. Wilson Greatbatch funded this work. The authors would also like to acknowledge support from the University of Wisconsin-Madison.

REFERENCES

22. Noah Hershkowitz, private communication.