Portfolios & Systematic Risk

Expected Return and Variance of a Portfolio

 $E(R) = w_i E(r_i)$ $V(R) = w_i w_j Cov(r_i, r_j)$

The Variance Contributed by Stock i

$$w_{j}Cov(r_{i}, r_{j}) = Cov(r_{i}, w_{j}r)$$
$$= Cov(r_{i}, r_{m})$$

Portfolios & Systematic Risk

Stocks with *small* or *negative* covariances with the market:

- 1. will reduce portfolio risk
- 2. will be demanded by investors.

Systematic risk determines value

Residual Risk: Why it Does Not Affect Value

Return Model for Securities Return on security i: $r_i = {}_i + {}_i r_m + {}_i$ **Return on security j:** $r_j = {}_j + {}_j r_m + {}_j$ $E({}_i) = E({}_j) = 0, Cov({}_i, {}_j) = 0$

Expected Returns, Variances & Covariances $E(r_i) = {}_i + {}_i E(r_m)$ $Var(r_i) = {}_i^2 Var(r_m) + Var()$ $Cov(r_i, r_i) = {}_i V(r_m)$

Mean & Variance of Portfolio Returns

Form a Equally Weighted Portfolio of n Stocks

 $R = (1/n) \quad r_i = (1/n) \quad (i + i r_m) + (1/n)$ $Var(R) = (1/n)^2 \quad i \quad j Var(r_m) + (1/n)^2 \quad Var(i)$

Residual risk is "diversified away" in a portfolio. Therefore it has no effect on the cost of capital.

Calculating the Cost of Equity

Cost of equity=risk free rate+Risk premium

 $r_e = r_f + (E(r_m) - r_f)$

where r_f is the risk free rate, and $E(r_m)$ is the return on the market portfolio.

is the measure of systematic risk

 $=Cov(r_e, r_m)/Var(r_m)$

Value of a Stock

large covariance with the market *implies* large Beta *implies* high cost of capital *implies* low stock price

Stock price= $E(Cash Flow)/(1+r_i)^t$

Some Betas

<u>Beta</u>	<u>COC</u>
0.617	<market< td=""></market<>
1.045	=Market
1.541	>Market
1.200	>Market
0.650	<market< td=""></market<>
1.435	>Market
0.565	<market< td=""></market<>
	<u>Beta</u> 0.617 1.045 1.541 1.200 0.650 1.435 0.565

Source Value Line, QuoteCom

Application to lunar mining of Helium-3

How would a market for ³He be organized? What would be the cost of capital to a lunar mining company? How much financing would be required?

Could the capital be raised?

Can D³He fusion generated power compete?

Cost of Capital for a Lunar Mining Company

Residual Risk

Related to lunar mining operations May be substantial Can be diversified away in investor portfolios <u>Systematic Risk</u>

Related to the sales of electricity Should be comparable to fuel suppliers to electric utilities and aerospace companies Cannot be diversified away in investor portfolios <u>Cost of Capital</u>

Should be comparable to fuel suppliers and aerospace companies

D³He Penetration in US Electricity Market

	Predicted
Year	% of US Energy
	Generated by DHe3 Fusion
2015	0.03%
2020	0.41%
2025	1.80%
2030	7.19%
2050	60.27%

From Thompson, Ott, Kulcinski "Economic Analysis of the Use of Lunar Helium-3 as a Fuel in U.S. Energy Policy," Wisconsin Working Paper 3-90-5, 1990

Financing the Lunar Mining Company: Production of ³He

Projected Investment in Mining Machines

Year	Mach.	Mach Invest	Launch Invest	Total Invest
2015	1	\$ 10M	\$ 50M	\$ 60M
2020	10	\$ 100M	\$ 500M	\$ 600M
2025	57	\$ 570M	\$ 2.,850M	\$ 3,420M
2030	230	\$ 2,300M	\$11,500M	\$13,800M
2050	2050	\$20,500M	\$102,500M	\$123,000M

Investment per miner-\$10,000,000 Launch cost per miner \$50,000,000

Financing the Lunar Mining Company: R&D

Private Financing of Large Projects Is Possible...

Some Large Projects

Investor (Year, Project)		<u>Size</u>	
Globa	alstar (1996)	\$ 2.00B	
	(Satellite Communications)		
Gene	ral Electric (1986)	\$ 6.14B	
	(Acquisition of RCA)		
KKR	(1989)	\$26.4B	
	(Takeover of RJR Nabisco)		

...But Large Losses Can be Devastating

Orange County, CA (1994) ~\$1.7B loss on municipal investment pool ~Filed for reorganization under Chapter 9, Federal Bankruptcy Reform Act of 1978 <u>Barings Bank (1995)</u> ~Nicholas Leeson lost \$1.3B on a derivative gamble ~Barings bank ceased to exist as an independent unit

Two Financing Plans

Government finances R&D; private enterprise finances production

Private enterprise finances R&D and production

Are they feasible?

 Government pays R&D 1996-2015 in return for the by-products of lunar mining after 2015.

✓ Lunar mining Company finances miner purchases, launches, and mining operations starting in 2015 and recovers ³He. Supplies by-products to the government after 2015.

Government

- \$3.2B spent between
 1996 and 2015
- Return on investment delayed until after 2015
- Taxing power used to raise funds
- Maximum losses to taxpayers are small

Lunar Mining Co

- No investment required until 2015
- Return on investment begins in 2015 when ³He is recovered and sold to electric utilities
- Minimum risks to investors

Private Only

Lunar Mining Company

- finances R&D 1996-2015
- finances miners, launches, and production after 2015
- recovers and sells both ³He and byproducts

Government

 buys by-products from Lunar Mining Company after 2015

Private Only

Lunar Mining Co

- \$3.2B investment
 1996-2015 produces
 no return until 2015
- ³He sales price must include R&D costs
- Risks relating to byproduct sales
- High risk venture with questionable profitability

Government

- Smaller tax revenues needed 1996-2015
- Moon bases must be supplied from earth with high cost launches
- Increased cost of space programs

General Assumptions

• Scientific Base on the Moon Established by Government

• An Investor Owned Lunar Mining Company Exists

- Holds a U.S. Franchise for Mining ³He on the Moon
- Responsible for Transport of Equipment to and ³He from the Moon
- Markets ³He Fuel to Utilities
- Is Financed Entirely with Equity Capital
- Seeks to Earn a Return Commensurate with Risks

 Government Agencies Fund Lunar Mining R&D in Return for Free Volatile By-Products

• First ³He Mining in 2015

Expenditure Categories Used to Analyze the Cost of ³He

Operating Cost Categories

Mining Equipment, Labor, and Habitat Costs

Launch Costs

Required Profits

Income Taxes

Development Cost and Cost Offset Categories

• Research and Development Costs

Cost Offsets from Volatiles

Assumptions Regarding Mining Operating Starting in 2015 (cost in 1993\$)

Launch Costs

\$1000/kg

50 tonnes

Miner Mass Miner Economic Life Miner Capacity Miner Purchase Price

Labor Force on the Moon Salary and Fringe Benefits Habitat and Consumables 20 years 33 kg of ³He/year/miner \$10,000,000

3 persons/miner \$500,000/person/year 820 kg/person/year

Miner Depreciation Miner Launch Cost Amortization Income Tax Rate Straight Line, 20 years Straight Line, 20 years 36%

Yearly Required Revenue Per Miner (Habitat+Labor+Profit+Taxes+Depreciation)

$$R = aH + aL + \left[\frac{L_m + M}{pvf} - D\right]$$
$$+ \frac{1}{1 - \left[\frac{L_m + M}{pvf} - D\right] + D$$

 $H=habitat \ cost/person /yr, \ L=salary+fringe/person/yr, \ L_m=miner \ launch \ cost, \ M=miner \ initial \ cost, \ D=Yearly \ depreciation=(L_m+M)/n, \ n=miner \ life, = income \ tax \ rate, \ pvf=present \ value \ factor, \ a=Number \ of \ astronauts$

H.E. Thompson

Cost of Helium-3 (Including the Cost of Capital)

Cost of Electricity Produced by Coal, D³He Fusion and Fission

Sensitivity of Price of ³He/g to Cost Elements

(15% Cost of Capital)

Launch Cost	/ kg Price of ³ He/g	
\$1000	\$523	
\$1500	\$728	
\$2000	<i>\$933</i>	
Ĩ	Number of Astronauts	Price of ³ He/g
	3	\$523
	6	\$568

The Role of By-Products from ³He Mining

18,200kg Volatile By-Products/kg ³He ✓ 600,600kg of By-Products per miner per year Assume Government Uses 30% of the By-Products Launch Costs Saved per miner per year = \$180,180,000 Yearly Savings Year **Miners** \$ 180,000,000 2015 1 2020 10 \$ 1,180,000,000 \$10,270,260,000 57 2025

Conclusions

- If the Government Funds all Additional Lunar Mining R&D
 - An adequate profit incentive for a Lunar Mining Company exists
 - The selling price to utilities will be between \$500/gram and \$800/gram
 - Electricity cost from ³He fusion power plants will be competitive with coal and fission
 - The government will recover its R&D expenditures by 2020
 - The government will earn a substantial return
 (20%) on its investment

Private Only

R&D Component of Cost of ³He (\$/g) If Lunar Mining Company Bears All R&D Funding

Private Only

Volatile Sales Needed to Offset Additional Space R&D

Price as a 0.9 **Fraction of** 0.8 Launch 0.7 Costs 0.6 \$9600/g ³He 0.5 (20% Cost of Capital) 0.4 0.3 \$3000/g ³He 0.2 (15% Cost of Capital) 0.1 0 -.1 .2 .5 .3 .4 .6 .7

Fraction of Volatiles Sold to Bases

.8.

.9

Can the funds be raised for financing of the Lunar Mining Co., Inc.?

- The key element is financing R&D
 - Funding amounts are large but manageable
 - Substantial risk for private investors
 - + 20 years of cash outlays beforea cash inflow
 - By-product sales needed to make ³He competitive
 - Uncertainty of market for the by-products
- Government risks are minor in government-private undertaking

References

Keown, Scott, Martin, Petty, Basic Financial Management, 7th ed. Prentice-Hall 1996

Bodie, Kane, Marcus, Investments, 3rd ed. Irwin, 1996

Greenberg, Hertzfeld, *Space Economics*, Vol 144, Progress in Astronautics and Aeronautics, American Institute of Aeronautics and Astonautics, 1992

Thompson, "Cost of 3He from the Moon," *Second Wisconsin Symposium on Helium-3 and Fusion Power*, Wisconsin Center for Space Automation and Robotics, July 1993, p.159-172