LUNAR-MARS BASE ACTIVATION

NEEP 533 LECTURE 34
Harrison H. Schmitt

NASA HST IMAGE
VARIOUS CLASS MISSIONS
(REVIEW AT YOUR LEISURE)

• SPLIT/SPRINT-OPPOSITION CLASS (1988 NASA OFFICE OF EXPLORATION)
 – ROBOTIC PRECURSORS
 – ONE CARGO VEHICLE/ONE CREW VEHICLE
 – 14 MONTHS
 – 30 DAYS IN ORBIT
 – 20 DAYS ON SURFACE
 – 4 CREW ON SURFACE / 4 IN ORBIT
 – 60 TOTAL HOURS OF EVAS BY 2 CREW MEMBERS
 – 3 MISSIONS

• SPLIT/SPRINT-OPPOSITION CLASS (1988 NASA JSC)
 – ROBOTIC PRECURSORS
 – ONE CARGO VEHICLE/ONE CREW VEHICLE
 – 14 MONTHS
 – 30 DAYS IN ORBIT
 – <20 DAYS ON SURFACE
 – 2 CREW ON SURFACE / 1 IN ORBIT
 – 60 TOTAL HOURS OF EVAS BY 2 CREW MEMBERS
 – 1 MISSION

• VENUS SWING-BY (COLLINS, 1988)
 – ROBOTIC PRECURSORS?
 – ONE VEHICLE
 – 22 MONTHS
 – 30 DAYS IN ORBIT?
 – 40 DAYS ON SURFACE
 – 4 CREW ON SURFACE / 4 IN ORBIT?
 – 120 TOTAL HOURS OF EVAS BY 2 CREW MEMBERS?
 – 3 MISSIONS?

• "MARS DIRECT" CONJUNCTION CLASS
 (ZUBRIN, 1996, NASA INTEREST, 1999)
 – ONE AUTOMATED CREW RETURN VEHICLE/ONE DELAYED CREW VEHICLE
 – 30 MONTHS
 – MANUFACTURE RETURN FUEL AND OXIDIZER PRIOR
 – TO CREW LAUNCH
 – 0 DAYS IN ORBIT
 – 18 MONTHS ON SURFACE
 – 4 CREW ON SURFACE / 0 IN ORBIT
 – REPEATED MISSIONS
MINIMUM ENERGY -1

- MINIMUM ENERGY-CONJUNCTION CLASS (Neal, et al., 1989)
 - FINAL RECONNAISSANCE FROM ORBIT / NO ROBOTIC PRECURSORS REQUIRED
 - ONE ORBITAL VEHICLE / TWO LANDERS
 - 32 MONTHS
 - 18 MONTHS IN ORBIT
 - 90 TOTAL DAYS ON SURFACE
 - 4 CREW ON SURFACE / 4 IN ORBIT ALTERNATING TO SURFACE
 - 1200 TOTAL HOURS EVAS BY 8 CREW MEMBERS AT TWO SITES
 - 4 MISSIONS / 8 SITES WITH FIFTH MISSION THE CREATION OF A PERMANENT MARS BASE WITH 8 INITIAL INHABITANTS
 - SYMMETRY WITH LUNAR ACTIVATION
MINIMUM ENERGY -2

- MAJOR POSSIBLE ENHANCEMENT OPTIONS
 - LAUNCH FROM THE MOON WITH LUNAR DERIVED CONSUMABLES (GREATER PAYLOAD) (SEE STANCATI, ET AL., 1991)
 - He-3 FUSION / NUCLEAR FISSION / SOLAR ELECTRIC PROPULSION (SHORTENED TRANSIT TIME)
 - TRAJECTORY SHAPING (FLEXIBLE STAY TIMES AT MARS)
 - AERO-BRAKING (MARS ORBIT INSERTION AND ON RETURN TO EARTH)
MINIMUM ENERGY -3
FLEXIBILITY IN TRANSIT AND ORBIT

• LANDING DELAY DUE TO EQUIPMENT OR WEATHER PROBLEMS
• SURFACE EXPLORATION DELAY DUE TO EQUIPMENT, WEATHER, ADAPTATION, OR BIOLOGICAL HAZARD PROBLEMS
• ASCENT DELAY DUE TO EQUIPMENT PROBLEMS
• EARLY ASCENT DUE TO DEGRADING SYSTEMS OR A CREW HEALTH PROBLEM
• DESIRE EXPLORE PHOBOS AND / OR DEIMOS(?)
• "MISSION CONTROL" AND COMMUNICATIONS RELAY IN MARS ORBIT
• LANDING SITE VERIFICATIONS FROM MARS ORBIT SENSORS AND ANALYSIS
MINIMUM ENERGY -4

• OTHER ISSUES
 – IN-ROUTE, IN-ORBIT, ON-SURFACE SIMULATION AND TRAINING REQUIRED
 – MISSION RELEVANT AND VALUABLE SCIENTIFIC ACTIVITIES IN-ROUTE
 – NON-TIME CRITICAL MISSION MONITORING AND DATA PROCESSING ON EARTH
 – NEED HIGH RATE DATA TRANSMISSION MARS-EARTH-MARS

• PROBLEMS
 – MASS COST TO SUPPORT CREW OF 8 (COULD REDUCE TO 4 AND ONE LANDING WITH INCREASE OVERALL RISK TO MISSION SUCCESS)
SPACE BIOMEDICAL ISSUES IN MICROGRAVITY

• MAJOR KNOWN PROBLEMS
 – MUSCLE ATROPHY
 • HEART
 • SUPPORT
 – BONE AND OTOLITH DE-MINERALIZATION
 – RATE OF RE-ADAPTATION TO GRAVITY ENVIRONMENT
 – IMMUNE SYSTEM COMPROMISE (?)
 – RADIATION PROTECTION

• COUNTER-MEASURE OPTIONS
 – HEAVY, ANAROBIC EXERCISE
 – CENTRIFUGAL FORCE
 – DRUG THERAPY
 – EXERCISE
 – CENTRIFUGAL FORCE
 – DRUG THERAPY
 – EXERCISE IN GRAVITY

ALL OF THE ABOVE

IN-TRANSIT AND IN ORBIT
“WATER” SURROUNDED STORM CELLAR
ON-SURFACE
“REGOLITH” COVER FOR ZENITH

NOTE: NO SCIENTIFICALLY CREDITABLE UNDERSTANDING OF THESE PROBLEMS AND OPTIONS HAS BEEN DEVELOPED TO DATE DUE TO THE LACK OF A SYSTEMATIC RESEARCH PROTOCOL AND USE OF INAPPROPRIATE TEST SUBJECTS.
ORBITAL “MISSION CONTROL” -1
(FIRST FEW MISSIONS)

• OVERALL SUCCESS NOT DEPENDENT ON SUCCESS OF PRECURSORS
• COMMUNICATIONS DELAY OF 8-40 MINUTES AND SUN PUTS EARTH “OUT OF THE LOOP”
• TAKE ADVANTAGE OF CONJUNCTION CLASS MARS-STAY REQUIREMENT
 – 16 MONTHS IN ORBIT
ORBITAL “MISSION CONTROL” -2
(FIRST FEW MISSIONS)

• PROVIDES CURRENT LANDING DATA AND HUMAN COGNITIVE ANALYSIS
 – LANDING SITE SELECTION AND VERIFICATION AND DETAILED SURFACE MISSION PLANNING
 – SPECTRAL DATA
 – RADAR DATA
 – SURFACE PROBES
 – LANDING BEACON DEPLOYMENT
 – LANDING TRAJECTORY PRECURSORS THROUGH ATMOSPHERE
 – DATA FUSION SOFTWARE
 – SAMPLE RETURN TO ORBIT VS. TESTS AFTER LANDING (?)
 – REFINE LANDER PAYLOAD
ORBITAL “MISSION CONTROL” -3
(FIRST FEW MISSIONS)

• BUILD ON EXISTING ROBOTIC DATA BASE
• USE EARTH DATA PROCESSING AND CONSULTATION
• MARS ENVIRONMENT AND SURFACE BETTER CHARACTERIZED THAN BEFORE APOLLO 11
 – EXCEPT FOR POTENTIAL PATHOGENS IN ISOLATED ECOSYSTEMS
• LANDING SYSTEMS MONITORING
• LANDER-EARTH DATA RELAY AS REQUIRED
• EVA PLANNING ASSISTANCE
• PHOBOS-DEIMOS EXPLORATION (SEE NEAL, ET AL, 1989)
IMAGINE, YOU ARRIVE IN MARS ORBIT AND THIS IS WHAT HAS HAPPENED SINCE LEAVING EARTH!
PICK YOUR LANDING REGION

OLYMPUS MONS ?

MERIDIANI

VALLES MARINERIS ?
VALLES MARINERIS AND OUTFLOW CHANNEL ELEVATIONS
NASA/MOLA

PICK YOUR LANDING AREA
...VALLES MARINERIS MAY PRESENT AN EXCITING APPROACH, LANDING, AND EXPLORATION TARGET!
WITH A LANDING AMONG THE LAYERS AND FOSSILS (?) OF CANDOR CHASMA

100 METERS OR A LITTLE LESS THAN A SATURN V OR A LITTLE MORE THAN A FOOTBALL FIELD

NASA/JPL/MALIN SPACE SCIENCE SYSTEMS
45 DAY HUMAN EXPLORATION FOR MARS BASE SITE EVALUATION

• WEEK ONE (DAYS 1-6)
 – READAPTATION
 – ENVIRONMENTAL TESTS
 – ACTIVATION OF EXTERIOR SENSORS
 – PHYSICAL MONITORING
 – PLANNING

• WEEK TWO (DAYS 8-13)
 – SHORT/SIMPLE PROXIMITY EVAS
 – DEPLOY COMM ANTENNA / SCIENCE STATION / AGRICULTURAL TEST STATION
 – START DEEP DRILL SYSTEM
 – SELECTED SAMPLE ANALYSIS
 – PHYSICAL MONITORING
 – PLANNING SESSIONS

• WEEK THREE (DAYS 15-20)
 – SECTOR 1 EXPLORATION
 – MID LENGTH EVAS USING ROVER
 – EXTENDED RANGE EVA WITH TWO ROVERS
 – SHALLOW DRILLING/DEPLOY GEO. NET
 – SELECTED SAMPLE ANALYSIS
 – PHYSICAL MONITORING
 – PLANNING SESSIONS

• WEEK FOUR (DAYS 22-27)
 – SECTOR 2 EXPLORATION
 – DITTO WEEK THREE

• WEEK FIVE (DAYS 29-34)
 – SECTOR 3 EXPLORATION
 – DITTO WEEK THREE

• WEEK SIX (DAYS 36-41)
 – SECTOR 4 EXPLORATION
 – ASCENT SIMULATIONS
 – DITTO WEEK THREE

• WEEK SEVEN (DAYS 43-45)
 – MOTHBALL FACILITY
 – PREPARE ROVER FOR REMOTE OPERATION
 – FINAL ASCENT SIMULATIONS
 – SAMPLE SELECTION AND STORAGE

• NOTE: ONE REST DAY PER WEEK
 – FOUR PERSON CREW
 – TWO PERSON EVAS, ALTERNATE BETWEEN PAIRS
EARLY LANDINGS STRATEGY

GOAL: PERMANENT BASE

• FIRST AND SECOND MISSIONS (POSSIBLE FOUR LANDINGS)
 – GENERAL EXPLORATION AND RECONNAISSANCE
 • AUTOMATED ROVER AFTER CREW DEPARTURE
 – DEVELOPMENT OF CRITERIA FOR BASE SELECTION
 – POTENTIAL TO ACCELERATE DECISION ON BASE SITE SELECTION
 • CORRELATION OF ORBITAL RECONNAISSANCE WITH DATA FROM SURFACE

• THIRD AND FOURTH MISSIONS (POSSIBLE FOUR LANDINGS)
 – EXAMINATION OF CANDIDATE BASE SITES
 • AUTOMATED ROVER AFTER CREW DEPARTURE
 – USE FOURTH LANDING TO SET UP CONSUMABLES PLANT AT SELECTED BASE SITE
 – GENERAL EXPLORATION AND RECONNAISSANCE
IF A LUNAR HELIUM-3 INITIATIVE BEGAN BY 2005 WITH ASSURED FUNDING, THE FIRST HUMAN MISSION TO MARS COULD BE LAUNCHED BY 2020, LARGELY USING TECHNOLOGY PAID FOR BY THE HELIUM-3 INITIATIVE.
ENJOY THE VIEW WHEN YOU GET THERE!!!!!!

“TRUE COLOR OF MARS”
PATHFINDER LANDER VIEW
NASA/JPL
A POSSIBLE REPRESENTATIVE VIEW FROM THE “MARTIAN MODULE” BEFORE THE FIRST EVA, HOWEVER.... VALLES MARINERIS WILL BE A TAD MORE SPECTACULAR