

FIG. 3.8. Leakage mechanisms identified for Westinghouse fuel [3.2, 3.19]. (a) Fuel fabricated after 1983; (b) fuel fabricated after 1987.

PCI

Non-barrier

Conventional

Corrosion

Improved

Debris fretting

Unknown

Total

Manufacturing defects

Barrier

CILC

R	

^a Severe chemical intrusion event at one US reactor.

TABLE 3.7. GE 8 × 8 FUEL FAILURE EXPERIENCE UP TO AUGUST 1993 (NUMBER OF FAILED ASSEMBLIES) [3.20]

. 0

45a

0.

FIG. 3.10. Estimated world distribution of fuel failure causes.

GE Fuel Experience May 1974 through October 1996 Non-Barrier

Barrier

8

8

Table 1

Fuel Operated		
Initial Cores	28	7
Reloads	226	232
Bundles	45,361	43,881
Fuel Rods	2,804,833	2,752,942
Lead Exposure, GWd/MTU		
Batch Average	36.0	43.5
Bundle Average	45.6	45.5
Rod Average	50.2	65.0
Rod Average	30.2	05.0
Fuel Rods Completed ≥ 1 Cycle	2,785,281	2,358,786
		•
Table	2	
GE BWR Fuel	Experience	
Manufactured After January 1,	1989 (through October	1996)
Fuel Operated		
Initial Cores 3		3
Reloads	155	
Bundles	26,835	
Fuel Rods	•	
Lead Exposure, GWd/MTU		
Batch Average	42	.2
Bundle Average	43	
Rod Average	48	
Fuel Rods Completed ≥ 1 Cycle	1,333,25	50
	-,,	

Fuel Rod Failures

Debris Fretting

Uninspected

Undetected Fabrication Defects

Figure 1
GE Fuel Performance Experience

Figure 2: Westinghouse fuel reliability compared to industry averages.

Figure 2. Rod D1 at EC Flaw Location Showing Cracks in Cladding Arcs Subtended by Missing Fuel Surface

Detection of Fuel Failures

Generally, the detection of 3 families of radioisotopes tells a lot about

Family	Radioisotopes	Insight
Noble Gases	¹³³ Xe, ^{133m} Xe, ¹³⁵ Xe, ^{138Xe} , ^{85m} Kr, ⁸⁸ Kr	Helps identify leak character or size
Iodine	¹³¹ I, ¹³² I, ¹³³ I, ¹³⁴ I, ¹³⁵ I	I is trapped between fuel and cladding-only released if water enters gap
Cesium	¹³⁴ Cs, ¹³⁷ Cs	Indicates fuel dissolution and BU level in leaking fuel. ¹³⁴ Cs α BU, ¹³⁷ Cs α (BU) ²

FIG. 4.3. ¹³⁴Cs/¹³⁷Cs activity ratio versus burnup.

Current Areas of R & D Focus

General

1.) Fuel and Cladding Material Properties at High Burnup

(Concern here is for transient conditions)

- Thermal diffusivity is different (lab vs in-reactor)
- Cladding ductility shows wide scatter due to H2 concentration, sample preparation, and measurement techniques
- Must understand in-reactor behavior
- 2.) Failure Root cause Investigation

(To achieve zero defects, must understand causes)

- Poolside inspections valuable for identification
- Expensive hotcell studies done only if poolside investigation does not work
- 3.) Updated Codes and Analytical Tools

(Especially important for high BU in PWR's)

- Gadolinia absorbers, local boiling, effect of boiling on flow properties
- Integrated nuclear and thermal hydraulic codes

Current Areas of R & D Focus (cont.)

4.) Transient Fuel Behavior

(Controversy over reactor-initiated accidents [RIA])

- All parties (regulators, utilities, and vendors) agree that simulated conditions are much more severe than reality
 - Particularly interested in post-LOCA and post-DNB conditions
 - Difficult to conduct meaningful experiments

5.) Next Generation Fuel

(Concern here is to increase reliability and operational flexibility)

- New fuel designs and materials
- >60 GWd/T burnup, load following, extended cycle time
- Water chemistry changes

Current Areas of R & D Focus (cont.)

PWR Specific

1.) Cladding Corrosion

(Plant surveillance shows that cladding corrosion is limiting further BU extension)

- 2.) Water Chemistry Control
 - Codes are now available to predict corrosion rate as a function of:

heat flux coolant temperature neutron fluence cladding hydrogen content cladding intermetallic particles heat treatment coolant Li concentration

Reccomendation is to raise pH and reduce source of crud

(requires 30% enriched ¹⁰B to keep Li concentration<3 ppm)

Current Areas of R & D Focus (cont.)

BWR Specific

- 1.) Finding cladding barrier that is resistent to PCI failures
- 2.) Reduce "fuel washout" from failed fuel