Aqueous Corrosion

150-250°C

$$7 \text{ U} + 6 \text{ H}_2\text{O} \text{ (g)} ---> 3 \text{ UO}_2 + 4 \text{ UH}_3$$

600-700°C

$$U + 2H_2O ----> UO_2 + 2H_2$$

Reduction of Corrosion in Water

- Metastable γ phase U + 7% Mo or, U + 7% Nb
- Supersaturated U + 3% Nb
 α phase
 U +1.5 % Nb + 5% Zr
 U + 3 % Nb + 0.7 Sn
- Intermetallic U₃Si Compounds

Irradiation Creep

• Thermal Creep -

Plastic deformation of a solid at high temperatures while the stresses are below yield strength

Irradiation Creep -

Enhanced thermal creep, usually proportional to fission rate

First Russian Report of Accelerated Creep -

- English Version $\approx 1.5 2\%$
- Later Translation ≈ 1.5 to 2
- 1958 Conference ≈ 1.5 to 2 orders of magnitude

Growth

- 1.) First instability to be recognized
 - 1955 1st UN Conf. on Peaceful Uses of Atomic Energy
 - US, USSR, and UK found tremendous variations in the behavior of polycrystalline rods
 - Found: (figure)

[010] Elongation [100] Contraction [001] No Change

2.) Growth rate at any time depends on the length at that time rather than the initial length.

$$L = L_o e^{Gf}$$

Where

G = growth const. **f** = frac. of atoms that have fissioned

$$G = \frac{\ln\left(\frac{L}{L_o}\right)}{f}$$

normally report

% Growth %Burnup

G is very temperature dependent (figure)

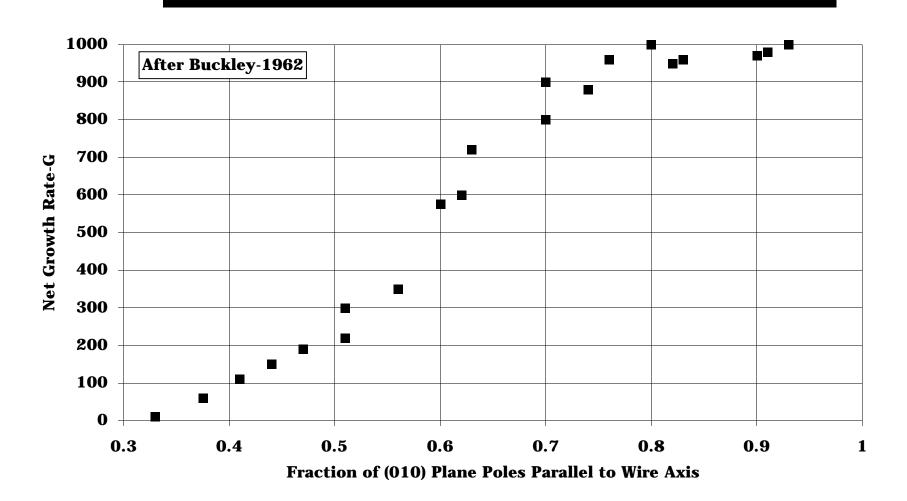
at 0.2% BU, (1850 MWd/tonne U)

$$\frac{L}{L_o} \approx 2.3 @ 100^{\circ}C$$

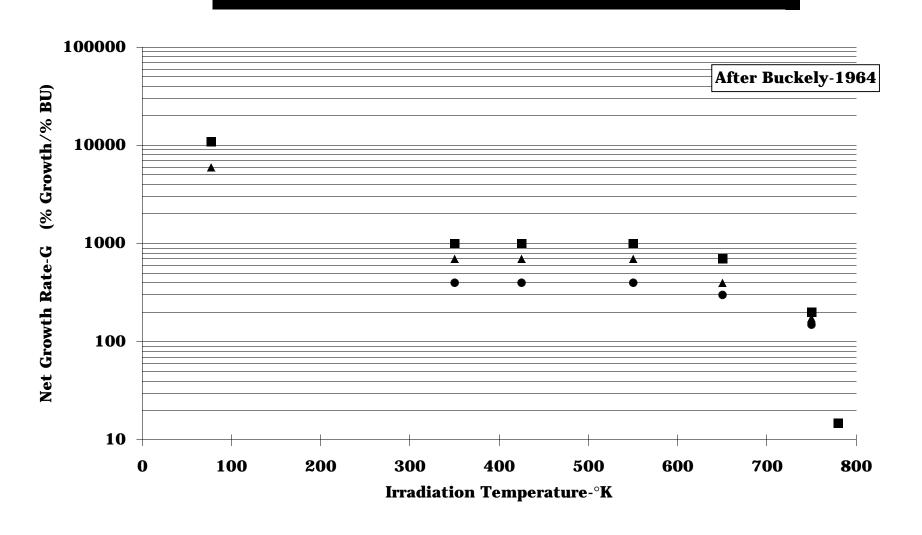
Texture Effects

(figure)

Elongated Rod (figure)


Explanation

- Fission fragments cause local heating
 - •• expansion-100, 001 (attracts vacancies)
 - •• contraction-010 (attracts interstitials)
- Defect migration produces
 - •• Vacancy loops on {100} planes (actually on {110})
 - •• Interstitial loops on {010} planes


Temperature Effects

- Low temperatures---> Random Loops (interstitials)
- Moderate Temp.---> Vacancy Loops (80-350 °C) Aligned
- Above 500°C ----> Loops anneal out

The Net Growth Rate of Polycrytalline U Wires Depends on the Fraction of (010) Pole Planes Parallel to the Wire Axis

The Growth Constant of U is Greatly Reduced at Higher temperatures

Physical Properties of the Six Plutonium Allotropes Coeff. of **Volume Transition Thermal** Change on Number of to Next **Expansion Crystal Atoms Per** Higher $x \bar{1}0^{-6} per$ **Density** Transforma Phase, °C gm/cm³ **Phase** Lattice **Unit Cell** °C tion, % Alpha Monoclinic 16 112 19.8 46.4 $\alpha \rightarrow \beta$, 8.9 34 185 17.65 38.4 Beta Body β -> γ , 2.4 centered Monoclinic 8 316 17.2 34.7 Gamma Face $\gamma \rightarrow \delta$, 6.7 centered (a=-19.7)Othorhombi (b=39.5)(c = 83.4)C δ -> δ ', -0.4 Delta fcc 451 15.9 -8.8 4 2 Delta Prime 480 body 16.0 -116. $\delta' -> \epsilon$ centered (a=305)- 3.0 tetragonal (c = -659)

640

16.51

+36.5

2

bcc

Epsilon

Swelling

fission-->2 atoms-->3 times U vol.

Early studies found much higher swelling rate

(Figure)

Temperature Dependence

- 350-500 °C Growth (tearing)
- 500-600 °C -Aligned pores/Voids
- > 600°C Gas Bubble Swelling

Al, Mg, and Fe reduce cavitational swelling by reducing grain size and increasing $\sigma_{\mathbf{y}}$

Breakaway Swelling (Figure)