
13.10 Migration Mechanisms and Growth of
Mobile  Bubbles

•  Now we let bubbles move too.
       •  Distinguish between as fabricated  ( some

He) and equilibrium ( Xe filled )  bubbles
- - - - - - - - - - - - - - - - - - - - - - - - - - - - -
13.10.1. Atomic Mechanism of Bubble Mobility
Due to Surface Diffusion

   Remember, surface atoms are in constant
motion, the slightest imbalance can cause
bubbles to move.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
13.10.2 Random Bubble Motion

There are two diffusivities of major importance

•  Surface Diffusivity (Ds)
•  Bubble Diffusivity (Db)

In chapter 7;

    
Ds =

λ s
2Γ s

4
              ( 2 dimensional)

total jump frequency of molecules on  surface

    
Db =

λb
2Γb

6
          ( 3 dimensional)

jump frequency of bubble



To relate  λs to λb, note that from the cube
model of figure 13.18

    λb = 
distance that bubble moves

# of jumps to move bubble ∆x
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- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

For a spherical bubble;
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Frequency of bubble jumps;
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Small bubbles move faster than large ones
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
13.10.3 Directed Bubble Migration in a
Temperature Gradient

Introduction of bubble disturbs temperature
profile  ( see figure 13.19)

One finds that ;
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Note that the flux of atoms along surfaces
(chapter 7) is;
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and;

    
vb = −

3DsQs
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kT 2R
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Note     Qs
*  (heat of transport) must be positive

because bubbles move up a temperature



gradient
Olander calculates for
 R = 100 Å    ao= 3 Å   T = 1000°K

    Qs
*  = 415 

  

kJ

mole
  
  

dT

dx
 = 4000 

  

° K

cm

Ds = 5 x 10-7 
    

cm2

sec
gives;

vb = 3 x 10-6 
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sec
,  0.2592 

  

cm
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1.814 
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But T changes with time, so we cannot
extrapolate too long
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
13.10.4  General Treatment of Bubble Mobility

Fred Nicols (now at ANL) has been a major
contributor in this area

vb = mobility x force = MbFb = 
  

DbFb

kT
Nicols relates macroscopic and microscopic
forces to find;
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13.10.5  Bubble Migration by Volume Diffusion

Consider the effect of vacancy motion outside
the bubble
Need to  get new expressions for bubble jump
frequency and jump distance.

{ See Figure 13.20}

Assuming that a bubble             Jump distance
is a perfectly absorbing
sphere;

    
Γb =

4πR2Dvol

ao
4
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  • λ v
2

Problem of determining this distance has been
treated by Olander

    λ v
2 = 2Rao

Remember that

    
Db =

λb
2Γb
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Which produces ( for Brownian motion);
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For surface diffusion 
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for moving 
species



Next, consider the effect of a temperature
gradient;

  
vb =

DbFb

kT

where 
  
F v = −

Qv
*
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and     Qv
*= heat of vacancy transport 

      ≈ energy of self diffusion

Nicols finds;
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Problem 13.2



 Problem 13.2

a.)  What is the root mean squared distance
traveled in 40 days by a 20 Å  diameter
bubble undergoing Brownian motion in UO 2
at 1400 °C

b.)  Recalculate a.) in a temperature
gradient of 2000 °C/cm

Assume that the bubble diffusivity is
governed by surface diffusion and   Qs

*  = 415
kJ/mole
======================================
a.)  From Ch. 7

  
r2 = 6D bt =

9a o
4Dst

πR4

eq. 13.214

use ao = 3 Å

t = 40•24•3600 = 3.46 x10 6 s
R = 10 Å
T = 1400°C = 1673 °K

eq. 13.216
Ds = 4 x105 • exp (-108/RT) cm 2/s



= 2.77 x 10 -9 cm2/s

  
r2 =

9 • 34 • 2.77x10−9 • 3. 46x106

π104
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= 0.015 cm

b.) Thermal Gradient Migration

eq 13.219
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= 0.310 cm

In other words, the bubble moves almost 21
times farther in a temperature gradient



13.10.6  Bubble Migration  in a Stress
Gradient

Trick is to calculate the force on  a
bubble as it moves from x to x + dx and
the stress changes from σ  to σ + dσ.

  
Fb = −

dGb

dx
         (at constant temp.)

Gibbs free energy of bubble

Three contributions to G b;

1.)  Change in free energy of contained
gas, dGg

2.)  Change in free energy of system
due to change in surface area, dG s

3.)Change in strain energy of solid,
dEsolid
For an Ideal Gas;

dGb = - p dV = - p(4 πR2dR)
For surface energy;

dGs = γ (8πRdR)



or, 
    
dGg + dGs = −4πR2 p −
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 Need to get this in terms of x
Use;
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differentiating;
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- - - - - - - - - - - - - - - - - - - - - - -
For elastic energy, start with

    
Eel =

σ 2

2K
Bulk Modulus



and end up with;

    

dEsolid

dx
= −

2πσR3

3K

 

 
 

 

 
 •

3σR + 8γ
3σR + 4γ

 
 
 

 
 
 

•
dσ
dx

 
 

 
 

Put it all together;

    
Fb = −
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For small bubbles and   For large
bubbles
low σ   and high
stresses;

3σR<< 4γ
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Bubbles always move down a
stress gradient !
----------------------------------
-----
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 13.10.7  Bubble Growth by Coalescence

Two main contributors;
• Greenwood and Speight (1963)
•  Gruber (1967)

Both assumed ;  • perfect gas
•  mechanical equilibrium
•  Surface diffusion
• Random or gradient migration
•  No resolutioning
•  No pinning

Greenwood and Speight Model
  

•  Did not consider directed motion;

1.)  Post Irradiation Annealing
•  Perfect Gas
•  No Size Distribution
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number of gas atoms/cc

2.)  In -Pile

  YXeFt = mN

  

dN

dt
=

YXe F
•

m
− 16πRDbN2

assumes that all bubbles are born at R
- - - - - - - - - - - - - - - - - -



after several steps;
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and swelling
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This over predicts the swelling because it does
 not account for gas atoms escaping

Gruber’s Method

He considered the
a.) production, and
b.) destruction of m sized bubbles

After a great deal of more exact formulations;

  
R = 1.32
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4DsmkT

γ
 

 
 

 

 
 

1

5
t

1
5

remember that S&G used 1.48

Figure 13.22
Note how much more effective coalescence is
than single atom absorption



However both predictions are too optimistic
because of neglecting of pinning to
dislocations and G.B.’s
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
Improvements

  

dCm

dt
= k1,m −1CCm−1 − k1,mCCm − b'Cm

  
+

1

2
1 + δ j,m/2( )∑ km − j, jCm− jC j

  
− 1 + δ j,m( )∑ km,jCmC j

But still have not included
•  spatial variations of defect concentration
•  No pinning

13.11 Pinning of Bubbles by Dislocations and
Grain Boundaries

•  Vacancy Clusters
•  Interstitial Clusters
•  Precipitates of FP
•  Dislocation Lines
•  Grain Boundaries

- - - - - - - - - - - - - - - - - - - - - - - - - - - -
             Model see figure 13.23 for dislocations

Fb = 2td cos F

line tension



If dislocation and temperature gradient is
perpendicular, then,
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3b2GT
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critical pulloff radius
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Grain Boundaries

See Figure 13.24

let γgb = grain boundary tension

Fb = 2πRγgb sin Φ cos Φ

when γ = 300 dynes/cm
critical radius = 4000 Å

Study Figure 13.25 for critical bubble radii

                 •  Note that surface diffusion is more
important in UO2

                 •  Because of better thermal
                      conductivity, there is a lower dT/dx
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



13.12 Bubl Code
(Transport)  •  Grass Code - C.Y. Li -
coalescence

(Monte Carlo) •  Bubl Code - Nicols - includes
pinning

In Bubl code
1.) Bulk coalescence neglected
2.) Resolution neglected
3.)  Nucleation ignored

Cell approach - Fig. 13.26 - size of grains

•  all gas starts out as small uniform sized
bubbles

•  Coalescence can occur on dislocation by
adjacent bubbles growing or by flux of incident
bubbles

•  Bubbles move until they hit GB

•  Released at cracks
- - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Swelling due to 

1.)  Bubbles at dislocations

2.)  Bubbles in transit from disloc. to GB

3.)   Bubbles trapped at GB



4.)  Bubbles in transit from GB to cracks


