Problem 11.2

In General,

 0_2 = constant (with radius)

$$\overline{G_{0_2}}$$
 = RT ln $_{0_2}$ = $\overline{H_{0_2}}$ - T $\overline{S_{0_2}}$
= -65 + 120 RTx | kcal/mole (T in units of 1000 °K)

or,
$$x = \frac{1}{120} \ln_{0_2} + \frac{65}{RT}$$
 1.)

and

$$\frac{T - T_s}{T_o - T_s} = 1 - \frac{r}{R}^2$$

a.)

$$\bar{x} = \frac{1}{R^2} \sum_{0}^{R} 2 r \cdot x(r) \cdot dr$$

$$= \frac{\mathbf{r}}{\mathbf{R}}^{2}, \mathbf{d} = \frac{2\mathbf{r}}{\mathbf{R}^{2}} \mathbf{dr}$$

Then,
$$T = T_s - (T_o - T_s)(1 -)$$

$$\bar{x} = \frac{1}{120} \int_{0}^{1} \ln o_{2} + \frac{65}{RT_{s} + \frac{T_{0} - T_{s}}{T_{c}} (1 -)} d$$

Solving;

$$ln \quad _{O_2} = 120 \overset{-}{x} - \frac{65}{R \big(T_O - T_s \big)} ln \ \frac{T_O}{T_s}$$

or since $\bar{x} = 0.05$

$$\ln O_2 = 120 \cdot 0.05 - \frac{65}{1.98(1.5)} \ln(2.5)$$

$$= -14.1$$

$$O_2 = 7.5 \times 10^{-7} \text{ atm } (6 \times 10^{-4} \text{ torr})$$

b.) to plot x(r), use eq. 1

$$x = \frac{1}{120} \ln_{0_2} + \frac{65 \cdot 1}{RT}$$

$$= -\frac{14.1}{120} + \frac{65}{1.98 \cdot 120 \cdot T}$$

$$= -0.1175 + 0.274 \frac{1}{T}$$

Use x from above with parabolic temperature Profile to get x(R)

$$\overline{G_{O_2}} = RT_s \ln_{O_2}$$

=1.98•1.00 • (-14.1)

= -28 kcal in chapter 12 we will see that

$$Zr + O_2 (g) --> ZrO_2$$

1000°K -220 kcal/mole

 $\overline{G_{O_2}}$ > $\overline{G_{Zr}}$ cladding oxidized. We shall see later that oxide layer prevents oxidation from occurring too fast.