$\frac{Effect of Porosity}{Purposely put porosity into UO_2}$

• Good - Reduces gross swelling

• Bad - Reduces thermal conductivity Define:

P = Volume of Pores Volume of Pores + Volume of Solid <u>Model of Heat Conductivity</u> (Figure 10.15)

Fraction of xsection area occupied by pore

k = P_c k_(Pore Tube) + (1 -P_c) k_s Fraction length occupied by pore tube

$$\frac{1}{k_{(poretube)}} = \frac{P_L}{k_p} + \frac{1 - P_L}{k_S}$$

This produces ;

 $k = k_{s} (1 - P^{2/3})$ where $P = P_{c}P_{L}$

Radiation Transport (see figure 10.16)

 $k_{p} = k_{g} + 4 \quad l_{y}T^{3}$ thermal conductivity of gas Empirical (to account for the minimum) $k = (3.11 + 0.0272 \text{ T})^{-1} + 5.39 \times 10^{-13} \text{ T}^{3}$

10.4 <u>Temperature Profiles in Cylindrical</u> <u>Fuel Rods</u>

$$\mathbf{T} - \mathbf{T}_{s} = \frac{\mathbf{HR}^{2}}{\mathbf{4k}} \quad \mathbf{1} - \frac{\mathbf{r}}{\mathbf{R}}^{2}$$

both a function of r, t

Previously we may have used ,

$$\frac{(T - T_s)}{(T_0 - T_s)} = 1 - \frac{r}{R}^2$$

but this is not good enough when H and k are varying

10.4.1 Volumetric Heating Rates

This is called the thermal rating

H Can Vary for at least 4 Reasons

- Not normal 1.) Gradient in initial enrichment
- Fast reactors 2.) Pu migration
- Both LWR & FBR 3.) Burnout or breeding effects

Thermal reactors 4.) Flux effects

$$\frac{P}{(R_o^2-r_o^2)}=\frac{2}{(R_o^2-r_o^2)}\bullet_{r_0}^RrH(r)dr=\overline{H}$$

10.4.2 Thermal Conductivity Integral

integrating,

$$\frac{1}{r}\frac{d rk\frac{dT}{dr}}{dr} + H = 0 \qquad \text{if H is constant}$$

first time,

$$rk \frac{dT}{dr} = -\frac{Hr^2}{2}$$
 (solid rod)

again,

(conductivity integral)
$$\begin{array}{c} {}^{1}_{0}\\ kdT = \displaystyle \frac{HR^{2}}{4} = \displaystyle \frac{P}{4} \\ {}^{T}_{S} \end{array}$$

Major use of conductivity integral is that when T_s and P are known, it can be used to estimate T_o

$$\begin{aligned} T_0 & T_0 & T_s \\ kdT &= & kdT - & kdT = \frac{P}{4} \\ T_s & 0 & 0 \end{aligned}$$

This integral has been measured for a mixed oxide fuel

(See figure)

Value for T_m

$$= \int_{0}^{T_{m}} kdT = 93 \pm 4 \frac{W}{cm}$$

If we know T_s , P (from experimental measurements), then we can get a value of,

T₀

kdT

which in turn will give T_0 from figure 10.20

example; It is shown that as a result of self shielding, the heat generation rate in a thermal reactor fuel pin is ,

is reciprocal of neutron diffusion length

$$=rac{1}{L}$$
 $rac{\sqrt{6}}{\sqrt{r^2}}$

 $\overline{r^2}$ = mean Vector distance that a monoenergetic neutron travels fom its source to where it is absorbed

$$H(r) = \frac{P}{R^2} \frac{(R)}{2I_1(R)} I_0(R)$$

Bessel Functions

Using H(r) in equation above T_{0} $kdT = \frac{P}{4} \quad \frac{I_{0}(R) - 1}{\frac{R}{2}} \quad \bullet I_{1}(R)$ See figure 10.21.

Note that reduced Conductivity Integral means lower T_0 , ----same as moving the heat source to the outside

• Note flux depression in fast reactors is absent

10.4.3 <u>Effect of Fuel Restructuring</u> **4 Main Regions** -(Figure 10.23)

	Radius	T°C	i,%
1.) Central Void	ro	2800	0
2.) Columnar Region	ro to r1	1700-2200	98-99
3.) Equiaxed Grains	r1 to r2	1600-1700	95-97
4.) As Fabricated	r2 to r3	1000	as fab.

Can determine the central void radius by;

$$\mathbf{r_o^2} = \frac{\begin{pmatrix} 1 - 2 \\ 1 \end{pmatrix}}{1} \mathbf{r_1^2} + \frac{\begin{pmatrix} 2 - 3 \\ 1 \end{pmatrix}}{1} \mathbf{r_2^2}$$
 (10.70)

Note ; we have to correct volumetric heating rates by density differences

$$H_3 = \frac{1}{R^2}$$
, $H_2 = \frac{1}{R^2} \cdot \frac{2}{3}$,....

Using these values with the heat conduction eq., we find that things can be expressed as a function of as fabricated porosity As fabricated region;

T₂

$$k_3 dT = \frac{1}{4} - \frac{r_2}{R}^2$$
 10.88
T_s

Equiaxed Region; (10.89) T₁

 $k_2 dT = \frac{2}{4} - \frac{2}{3} - \frac{r_2}{R} + \frac{2}{1 - \frac{r_1}{r_2}} + \frac{2}{1 - \frac{3}{2}} - \frac{1}{2} - \frac{3}{2} - \frac{1}{2} T_2$

2

o

<u>Columnar Region</u> (10.90)

T₀

$$k_{1}dT = \frac{1}{4} - \frac{1}{3} - \frac{r_{1}}{R} + \frac{2}{1} - \frac{r_{0}}{r_{1}} + \frac{2}{r_{0}} - \frac{r_{0}}{r_{1}} + \frac{2}{r_{0}} + \frac{r_{1}}{r_{0}} + \frac{r_{1}}{r_{0}$$

Procedure to Find Temperature Distribution

where f(P_i) = reduction in thermal conductivity in the ith zone with P_i porosity (see eq. 10.40, 10.42, 10.44)

once k_idT is determined for as fabricated and equiaxed zones by eq. 10.91;

then eq. 10.88 is used to find $\frac{r_2}{R}$ then eq. 10.89 is used to find $\frac{r_1}{R}$ then eq. 10.70 is used to find r_0 r_0 then eq. 10.90 is used to find $k_1 dT$ T_1 then eq. 10.91 is used to find k dT T_0 then fig. 10.20 gives T_0 (fig.10.24)

P

10.4.4 <u>Fuel Surface Temperature</u>

So far we have assumed we know T_s , but T_s is a function of axial position (z)

From heat transfer considerations;

changes with z

 $T_s = T_{coolant} + \frac{P}{2 R_c U}$

 $T_{inlet} + \frac{\#rods}{QC_{pc}} \int_{0}^{z} (z')dz' = \frac{1}{U} = \frac{1}{h_{gap}} + \frac{t_{c}}{k_{c}} + \frac{1}{h_{coolant}}$

Table 10.5 - Note Importance of Gap

10.4.5 Conductance of Fuel Cladding -Gap

Initial Conditions	End of life	
gap thickness 100 µm	0 to few µ m	
gap gasHe	He + Kr+ Xe	
gas pressure 1bar	50-100 bar	

Conductance of open gap

$$h_{gap} = \frac{k_g}{t_{gap}} + \frac{4 T^3}{\frac{1}{c} + \frac{1}{f} - 1}$$

Thermal Conductivity of Gases

 k_g (pure gas) = A x 10⁻⁶ T^{0.79} W/cm°C 15.8 He 1.15 Kr

0.72 Xe

Thermal Conductivity of Gas Mixture

$$\boldsymbol{k_{g}} = (\boldsymbol{k_{He}})^{\boldsymbol{x_{He}}} (\boldsymbol{k_{Xe}})^{1-\boldsymbol{x_{He}}}$$

At normally small gaps during operation, the gas conduction term dominates

<u>Closed Gap</u> When fuel expands to contact the cladding, the heat transfer is across the various contact points and the gas in between

$$\mathbf{h_{gap}} = \frac{\mathbf{k_g}}{\left(-\mathbf{g_c} + \mathbf{g_f}\right)} + \mathbf{C} \frac{\mathbf{2k_fk_c}}{\mathbf{k_f} + \mathbf{k_c}} - \frac{\mathbf{P_i}}{\frac{1}{2}\mathbf{H}}$$

$$h_{gap} = \frac{1Watt}{cm^2 \ C}$$