Effect of Porosity

Purposely put porosity into UO2

- Good Reduces gross swelling
- Bad Reduces thermal conductivity Define;

$$P = \frac{Volume \ of \ Pores}{Volume \ of \ Pores + Volume \ of \ Solid}$$

Model of Heat Conductivity

(Figure 10.15)

Fraction of xsection area occupied by pore

$$k = P_c k_{(Pore Tube)} + (1 - P_c) k_s$$

Fraction length occupied by pore tube

$$\frac{1}{k_{(poretube)}} = \frac{P_L}{k_p} + \frac{1 - P_L}{k_S}$$

This produces;

$$k = k_s (1-P^{2/3})$$
 where $P = P_c P_L$

Radiation Transport (see figure 10.16)

$$\begin{array}{lll} k_p &=& k_g &+& 4 & l_y T^3 \\ & & thermal \ conductivity \ of \ gas \end{array}$$

Empirical (to account for the minimum) $k = (3.11 + 0.0272 \text{ T})^{-1} + 5.39 \times 10^{-13} \text{ T}^3$

Temperature Profiles in Cylindrical Fuel Rods

$$T - T_s = \frac{HR^2}{4k} \quad 1 - \frac{r}{R}$$

both a function of r, t

Previously we may have used,

$$\frac{(T-T_s)}{(T_0-T_s)}=1-\frac{r}{R}^2$$

but this is not good enough when H and k are varying

10.4.1 Volumetric Heating Rates

$$P = \frac{Power}{Unit Length of Rod} \quad (\frac{W}{cm})$$

This is called the thermal rating

H Can Vary for at least 4 Reasons

Not normal 1.) Gradient in initial enrichment

Fast reactors 2.) Pu migration

Both LWR & FBR 3.) Burnout or breeding effects

Thermal reactors 4.) Flux effects

$$\frac{P}{(R_o^2-r_o^2)}=\frac{2}{(R_o^2-r_o^2)} \cdot \frac{R}{rH(r)dr}=\overline{H}$$

10.4.2 Thermal Conductivity Integral

integrating,

$$\frac{1}{r} \frac{d rk \frac{dT}{dr}}{dr} + H = 0 \quad \text{if H is constant}$$

first time,

$$rk\frac{dT}{dr} = -\frac{Hr^2}{2}$$
 (solid rod)

again,

Major use of conductivity integral is that when $T_{\mathbf{S}}$ and P are known, it can be used to estimate $T_{\mathbf{O}}$

This integral has been measured for a mixed oxide fuel

(See figure)

Value for T_m

$$= \int_{0}^{T_{m}} kdT = 93 \pm 4 \frac{W}{cm}$$

If we know T_S , P (from experimental measurements), then we can get a value of,

 T_0

kdT

which in turn will give T_o from figure 10.20

example; It is shown that as a result of self shielding, the heat generation rate in a thermal reactor fuel pin is,

is reciprocal of neutron diffusion length

$$=\frac{1}{L} \quad \frac{\sqrt{6}}{\sqrt{\overline{r^2}}}$$

 $\overline{r^2}$ = mean Vector distance that a monoenergetic neutron travels fom its source to where it is absorbed

$$H(r) = \frac{P}{R^2} \frac{(R)}{2I_1(R)} I_0(R)$$

Bessel Functions

Using H(r) in equation above

$$kdT = \frac{P}{4} \quad \frac{I_0(R) - 1}{\frac{R}{2} \cdot I_1(R)}$$

See figure 10.21.

Note that reduced Conductivity Integral means lower T_0 ,same as moving the heat source to the outside

• Note flux depression in fast reactors is absent

10.4.3

<u>Effect of Fuel Restructuring</u>

4 Main Regions -(Figure 10.23)

	Radius	T °C	_i_,%
1.) Central Void		2800	0
2.) Columnar Region	ro to r1	1700-2200	98-99
3.) Equiaxed Grains	r1 to r2	1600-1700	95-97
4.) As Fabricated	r2 to r3	1000	as fab.

Can determine the central void radius by;

$$\mathbf{r_o^2} = \frac{\left(\begin{array}{ccc} 1 & - & 2 \end{array}\right)}{1} \ \mathbf{r_1^2} + \frac{\left(\begin{array}{ccc} 2 & - & 3 \end{array}\right)}{1} \ \mathbf{r_2^2}$$
 (10.70)

- - - - - - - - - - - - - - - -

Note; we have to correct volumetric heating rates by density differences

$$H_3 = \frac{}{R^2}$$
, $H_2 = \frac{}{R^2} \cdot \frac{}{}$,....

Using these values with the heat conduction eq., we find that things can be expressed as a function of as fabricated porosity

As fabricated region;

$$k_3 dT = \frac{r_2}{4} - 1 - \frac{r_2}{R}$$
 10.88

$$\frac{Equiaxed}{r_{1}} \frac{Region;}{k_{2}dT} = \frac{2}{4} \frac{r_{2}}{3} \frac{r_{2}}{R}^{2} 1 - \frac{r_{1}}{r_{2}}^{2} - 1 - \frac{3}{2} \ln \frac{r_{2}}{r_{1}}^{2}$$

Columnar Region (10.90)

$$k_{1}dT = \frac{1}{4} - \frac{1}{3} - \frac{r_{1}}{R} + \frac{2}{1 - \frac{r_{0}}{r_{1}}} - \frac{r_{0}}{r_{1}} + \frac{2}{1 - \frac{r_{0}}{r_{0}}} + \frac{2}{1 - \frac{r_{0}}{r_{0$$

Procedure to Find Temperature Distribution

$$T_{S}, , \frac{3}{s} - \cdots > T_{1}, \frac{1}{s} - \cdots > Determine$$
 known
$$T_{2}, \frac{2}{s} \qquad k_{i}dT$$

$$T_{i}$$

Experiment i.e., for 95% dense material (10.91)

where $f(P_i)$ = reduction in thermal conductivity in the ith zone with P_i porosity (see eq. 10.40, 10.42, 10.44)

once k_i dT is determined for as fabricated and equiaxed zones by eq. 10.91;

then eq. 10.88 is used to find $\frac{r_2}{R}$

then eq. 10.89 is used to find $\frac{\mathbf{r_1}}{\mathbf{R}}$

then eq. 10.70 is used to find r_0

then eq. 10.90 is used to find k_1dT

T₁
T_o

then eq. 10.91 is used to find k dT

then fig. 10.20 gives T₀ (fig.10.24)

10.4.4 **Fuel Surface Temperature**

So far we have assumed we know $T_{\rm S}$, but $T_{\rm S}$ is a function of axial position (z)

From heat transfer considerations;

changes with z

$$T_s = T_{coolant} + \frac{P}{2 R_c U}$$

$$T_{inlet} + \frac{\#rods}{QC_{pc}} \int_{0}^{z} (z')dz' \quad \frac{1}{U} = \frac{1}{h_{gap}} + \frac{t_{c}}{k_{c}} + \frac{1}{h_{coolant}}$$

Table 10.5 - Note Importance of Gap

10.4.5 Conductance of Fuel Cladding -Gap

<u>Initial Conditions</u>	End of life	
gap thickness 100 µm	0 to few µ m	
gap gasHe	He + Kr+ Xe	
gas pressure 1bar	50-100 bar	

Conductance of open gap

$$h_{gap} = \frac{k_g}{t_{gap}} + \frac{4 T^3}{\frac{1}{c} + \frac{1}{f} - 1}$$

Thermal Conductivity of Gases

$$k_g$$
 (pure gas) = A x 10⁻⁶ T^{0.79} W/cm°C

1.15 Kr 0.72 Xe

Thermal Conductivity of Gas Mixture

$$k_g = (k_{He})^{x_{He}} (k_{Xe})^{1-x_{He}}$$

At normally small gaps during operation, the gas conduction term dominates

Closed Gap

When fuel expands to contact the cladding, the heat transfer is across the various contact points and the gas in between

$$h_{gap} \ = \ \frac{k_g}{\Big(\ + g_c \ + g_f \Big)} \ + C \ \frac{2k_f k_c}{k_f \ + k_c} \ \frac{P_i}{\frac{1}{2}H}$$

$$h_{gap} = \frac{1Watt}{cm^2 \, C}$$