Radiation Damage - Zr

- (See D. O. Northwood, Atomic Energy Review, Vol. 15, No. 4, p. 547, 1977)
- Note that the operating temperature for Zircaloy in LWR's is 100 350 ℃ but mainly 300 to 350 ℃
- Most typical damage structure is a high density of dislocation loops (20 - 100 Å in diameter)

Neutron Fluence Effects on Zircaloy - II

- 1.) no damage observed below 2 x 10^{19} n cm⁻² (E> 1 MeV)
- 2.) Density of loops decreases with increasing n fluence
- 3.) Loop size increases with increasing fluence
- 4.) Saturation in visible defects at $\approx 1 \times 10^{21} \text{ n cm}^{-2} \text{ (E > 1 MeV)}$

(Figure 7-23)

Temperature Effects

• Above ≈ 500 °C, no visible damage found

- At T > 400 °C, mainly vacancy loops
- At T< 400 °C, mainly interstitial loops
- Voids only found in ion bombarded samples when gas atoms are preinjected

Alloying

Increasing alloying elements in solid solution, decreases loop size and increases loop density

For the effects of microstructure and stress, see Northwood

Recent Information From Dr. Ron B.
Adamson
Manager
Zircalloy Division
General Electric Corp.

- Performance to date of BWR and PWR fuel
- @ 40,000 MWd/MT ($8x10^{21} \text{ n/cm}^2$, E>1 MeV)

only 1 failure in 100,000 rods

• The use of Zr sleeves has solved the PCI prob. (10 years ago the major mode

of fuel failure was Pellet Clad Interaction (PCI))

• Crud Induced Localized Corrosion (CILC) definitely linked to Cu in BWR water. Many utilities have replaced copper based condenser tubes with stainless steel or Ti tubes.

Near term goal for BWR's and PWR's

- 45,000 MWd/MT for BWR's
- 60,000 MWd/MT for PWR's
- only 1 failure in 1,000,000 rods
- Irradiation makes $Zr(Cr,Fe)_2$ precipitates amorphous by 1 x $10^{21}~n/cm^2$
- Radiation Effects
 - Fatigue (Fig)
 - Growth (Fig)
 - Creep (Fig)

GE Method to Reduce FCI in LWR's - After Adamson

Patent # 4,894,203

