UW-Madison IEC Laboratory

continuing capacity upgrades and infrastructure upgrades

Richard Bonomo^{1*}, Eric Alderson¹, Gabriel Becerra¹, David Boris², Logan Campbell¹, David Donovan¹, Brian Egle¹, Gil Emmert¹, Lauren Garrison¹, Gerald Kulcinski¹, Matthew Michalak¹, John Santarius¹, Craig Schuff¹, Sam Zenobia¹

1,2, * see abstract for affiliations and contact information

Presentation Outline

- 1. Current Status
- 2. Laboratory configuration and basic operation
- 3. Power Supply Installation
- 4. Other Infrastructure Improvements

Prof. Gerald Kulcinski provided an overview of experiments in progress this morning.

Current Status of Laboratory

- Personnel:
 - 7 graduate students
 - 1 staff engineer/researcher/laboratory manager
 - 4 faculty

Current Status of Laboratory (as of October 2009)

- Apparatus
 - 3 operating IEC devices
 - 1 materials testing device (newly installed)
 - 300 kVDC power supply (newly installed)
 - 2-channel low-ripple filament-heating-and-bias power supply (newly installed)

University of Wisconsin -- Madison Fusion Technology Institute Inertial Electrostatic Confinement Group

Laboratory Apparatus

University of Wisconsin -- Madison Fusion Technology Institute Inertial Electrostatic Confinement Group

Data Flow (typical)

Data are analyzed using a number of software packages available in the laboratory and at the college computing facility

University of Wisconsin -- Madison Fusion Technology Institute Inertial Electrostatic Confinement Group

- Completed since last year
- Installation of the new negative-polarity high-voltage power supply, 0-300 kVDC, 0-200 mA purchased from Phoenix Nuclear Laboratories (Piefer, earlier today)

University of Wisconsin -- Madison Fusion Technology Institute Inertial Electrostatic Confinement Group

Motivation for Power Supply Upgrade

• Neutron flux appears to be monotonically increasing with voltage (greater voltage ==> more neutrons)

Graph courtesy of David Donovan

University of Wisconsin -- Madison Fusion Technology Institute Inertial Electrostatic Confinement Group

Motivation for Power Supply Upgrade

• Neutron flux appears to be monotonically increasing with current (greater current ==> more neutrons)

Neutron Rate vs. Cathode Current

Graph courtesy of David Donovan

University of Wisconsin -- Madison Fusion Technology Institute Inertial Electrostatic Confinement Group

- Completed since last year
- ✓ Filament heating and bias power supply
- \succ 2 independent power supplies, each having:
 - ➢ 0-130 VDC for heating, up to 1 kW
 - ➢ 0-300 VDC for bias, up to ~10 A (3 kW)
 - Ripple less than 1 V_{p-p} at full output (vs. 10 V_{p-p} for old supply)
 - Four output ports, 3 of which are individually trimmed via a rheostat

- Completed since last year
- ✓ Filament heating and bias power supply
 - Extensively instrumented, and equipped for remote monitoring of:
 - Filament Voltage
 - Bias Voltage
 - Heating and Bias Currents for all eight output ports
 - Monitoring circuitry interfaced to LabView

- Completed since last year
- ✓ Design and construction of additional vacuum chamber for materials testing (Zenobia, Tues. PM)
- ✓ Installation of *twelve* 0-15kVDC power supplies in support of SIGFE (replaces 2 adapted capacitor-charging power supplies) (Egle, Mon. PM)

- Completed since last year
- ✓ Design and construction of new bias-pulsing power supply for HEU detection experiments (awaiting first "live" trials)
 - More rapid turn-on and turn-off of filament bias (< 10 µs ?)
 - Compact design: reduces number of "boxes" required
- ✓ Repackaging of high-voltage capacitors needed to support cathode voltage during pulse operation

- Completed since last year
- ✓ Adaptation of cable switching system to allow flexibility during the transition to higher-voltage operation (differing cable sizes)
- ✓ Installation of a higher-frame-rate (up to 200 FPS) video camera *with X-Ray shielding*
- ✓ Development and deploying of Time-of-flight diagnostic (Donovan, Tues. AM)
- ✓ Conversion of database "back-end" from Access (MS JET) to open-source MySQL

- Anticipated in the near future (postponed from last year)
 - Design and installation of glass-metal seal on HELIOS helicon ion source

- Anticipated in the near future (postponed from last year)
 - Re-configuring of experiment grounds and power connections

- Anticipated in the near future (postponed from last year)
 - Fabrication of new metal-free HV feed-throughs, and installation on HOMER and HELIOS.

- Anticipated in the more distant future:
 - Design and installation of a ³He recovery system.

Motivation:

Price of ³He

Concluding Remarks

- IEC Laboratory staff continues to improve experimental apparatus, infrastructure and methodologies, and to design innovative experiments.
- The laboratory should be able to expand the operating regime (cathode current and voltage) in a very substantial way in the course of the next two years.

Questions?

