A New High Voltage Power Supply for Fusion Research and Applications

October 12th, 2009
Dr. Gregory Piefer
Email: greg.piefer@phoenixnuclearlabs.com
Phone: 877-253-5799
Talk Overview

- Introduction to Phoenix Nuclear Labs
- Motivation for developing a power supply
- Product features
- Product development and testing
About Phoenix Nuclear Labs

- Founded in August, 2005 with the mission to commercialize near term applications of nuclear technologies
- Located in Middleton, WI; 5000 ft\(^2\) lab, including office space, machine shop, test and assembly area, and bunker
- Lead by Dr. Gregory Piefer, advised by Dr. Paul DeLuca (UW Provost), Dr. Thomas “Rock” Mackie (TomoTherapy), Dr. Harrison Schmitt (Apollo 17), and Scott Klug (U.S. House of Representatives)
- Near term focus is on medical and defense applications of fusion
- Also interested in selling technologies developed to facilitate fusion

Confidentiality statement: This document is the property of Phoenix Nuclear Labs and may not be copied, used, or disclosed for any reason except as authorized by Phoenix Nuclear Labs
Motivation for Developing a Power Supply

- The present markets for fusion research and applications demand an efficient, high power, high voltage power supply
 - Neutron systems require up to 300 kV at tens of kW
 - Proton systems require up to 500 kV, also at high power

- Protection of delicate equipment essential

- Also important: safety, durability, resistance to EMI, low ripple, computer control

- Until now, nothing on the market could meet these needs
PNL Has Developed a System to Meet These Needs

- New power system developed, tested and is now being sold
- Present model supports up to 300 kV unipolar output, next generation to support up to 500 kV

Primary features

- High voltage and high power—units available up to 300 kV, 90 kW
- Unprecedented time to power system shutdown: < 50 μs
- Low stored energy: < 150 J at full voltage
- Low ripple: < 0.6% at maximum rated current
- High “wall plug” efficiency: > 90 %
- PLC control
- Fiber optic control signals protect user and are immune to EMI
- High frequency: 400 Hz minimizes size of magnetic components
Power Supply Development Posed Many Challenges

- 300 kV high voltage section
 - Electric field control very challenging
 - Tank cleanliness and oil purity of critical importance
 - Individual components require thorough testing
 - High voltage, current necessitate consideration of parasitics
 - Mistakes can be very expensive

- Control system / driver circuitry also challenging
 - Fast shutdown requires IGBT “switching” system
 - Switching must be fast for good efficiency
 - But fast switching causes displacement currents that can destroy high voltage components
 - Series resonant sine-wave filter developed to solve this
Development Occurred in Several Phases

- Development of control and power feed systems
 - Electrical
 - Mechanical
- Software
- High voltage component design and testing
- High voltage system mechanical design
- Oil filling and drying procedures
- Complete system testing

Confidentiality statement: This document is the property of Phoenix Nuclear Labs and may not be copied, used, or disclosed for any reason except as authorized by Phoenix Nuclear Labs
Control and Power Feed Systems

- IGBT system had several bugs resulting in destruction of the semiconductors
 - Improper phase balance at low output lead to a small DC voltage on an AC system
 - Testing done at PNL lead to an entirely new firmware release for all new Rockwell drives
- Proprietary control boards for signal processing and high speed shut down developed
- All components mounted into a high quality sealed enclosure for durability and long life
- User controls very rugged
- Internal layout designed to minimize electrical interference between power system and signals

Confidentiality statement: This document is the property of Phoenix Nuclear Labs and may not be copied, used, or disclosed for any reason except as authorized by Phoenix Nuclear Labs
High Voltage Component Testing

- Independent testing required on many components
 - Many components not rated on important parameters (maximum voltage, surge energy, etc.)
 - Unexpected component failures can damage other components

- Special test equipment designed for testing
 - Surge energy: test repeatedly to 10x stored energy
 - High voltage transient: test repeatedly to 50% overvoltage
 - Teraohm meter for checking diode bridge balance
 - Chemical compatibility test
High Voltage Section

- Most challenging component was high voltage transformer
 - High field stress, coils in close proximity necessitate anti-corona, combination of solid and liquid dielectric materials
 - AC behavior makes displacement currents damaging to solid insulation
 - Design needed to be physically robust as well

- Other high voltage components mounted to dielectric wall
 - Mechanically robust mountings designed
 - Electrical connections utilize large smooth conductors

- All high voltage components mounted to component frame
 - Frame drops into reinforced steel tank capable of withstanding vacuum

Confidentiality statement: This document is the property of Phoenix Nuclear Labs and may not be copied, used, or disclosed for any reason except as authorized by Phoenix Nuclear Labs
Oil Filling and Drying Procedures

- Multiple dielectric fluids were evaluated on five characteristics:
 - Dielectric strength
 - Dielectric constant
 - Density versus temperature
 - Viscosity
 - Flammability

- After selection of type, oil must be cleaned and dried to guarantee maximum performance:
 - Oil heated to 66°C
 - Multiple passes through 0.1 μm filter
 - Pulled into high voltage tank by vacuum, flow controlled so pressure never exceeds 1 kPa
System Test Procedures

- Overvoltage endurance test: 10% above rated voltage for 12 hours continuous
- Full load test: 24 hour test at full load
- High speed system shutdown test
- Short circuit test at full voltage, full load
- Installation at customer location with on-site testing
High Speed Shutdown
PNL is Now Selling Power Supplies of up to 300 kV and 300 mA

- Request for more information can be found at www.phoenixnuclearlabs.com/products.php
- Please see our poster, presented by Mr. Christopher Seyfert in the poster section for more information
- Also, please see the UW’s 300 kV, 60 kW unit on your tour of their laboratory
Questions?

Dr. Gregory Piefer-President
greg.piefer@phoenixnuclearlabs.com
(877) 253 5799
www.phoenixnuclearlabs.com