

ARIES-AT Radial Build Definition: DCLL Blanket w/ Thin SiC Inserts

L. El-Guebaly

Fusion Technology Institute UW - Madison

Contributors:

R. Raffray, S. Malang (UCSD), S. Sharafat, M. Youssef (UCLA)

ARIES-Pathways Project Meeting

January 21 - 22, 2009 UCSD

Objectives

- Redesign ARIES-AT with DCLL system (a la ARIES-CS) and redefine radial builds with:
 - DCLL blanket and shield
 - < 90% Li enrichment
 - LiPb/He Manifolds (<u>tentative</u> composition/dimension/location)
 - No stabilizing shells (to be added later)
 - LT magnets (instead of HT magnets).
- Assess impact of SiC inserts on TBR:
 - **Reference**: 100% dense, 0.5 cm thick SiC insert
 - Alternative: 0.5-0.7 cm thick Ultramet SiC insert (0.3-0.5 cm 10% dense SiC foam sandwiched between 1 mm 100% dense impermeable CVD-SiC face sheets; 0.23-0.25 cm equivalent SiC thickness).
- Compare reference ARIES-AT with ARIES-AT-DCLL and highlight impact of DCLL system on overall design.

ARIES-AT Reference Design

Fusion Power 1755 MW

Major Radius 5.2 m Minor Radius 1.3 m

Peak Γ @ IB, OB, Div 3.1, 4.8, 2 MW/m²

SiC/SiC Composite Structure

LiPb/SiC Blanket

Discrete LiPb Manifolds

HT S/C Magnet @ 70-80 K

No W on FW

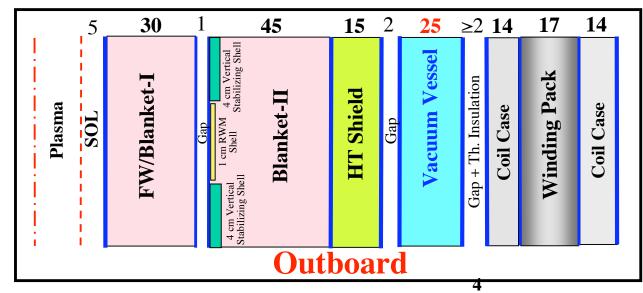
Calculated Overall TBR 1.1

 η_{th} ~ 60%

Availability 85%

Plasma Control:

- 5 Tungsten Shells on IB and OB
- 2 Vertical Position Coils
- 2 Feedback Coils



ARIES-AT Radial Builds: IB, OB, Div

(SiC Structure; HT Magnets)

ARIES-AT Blanket Options

Reference ARIES-AT OB Blanket

SiC Structure

BreederLiPbCoolantLiPb

ARIES-AT-DCLL Blanket (a la ARIES-CS)

FS Structure

Breeder LiPbDual Coolants LiPb and He

ARIES-AT Compositions

Inboard:

FW/Blanket

HT Shield

 $\mathbf{V}\mathbf{V}$

Outboard:

FW/Blanket-I

FW/Blanket-II

HT Shield

VV Top/Bottom:

Divertor System

Replaceable HT Shield

Permanent HT Shield

 $\mathbf{V}\mathbf{V}$

ARIES-AT-LiPb/SiC (Reference Design)

81% LiPb, 19%SiC

15%SiC, 10% LiPb, 70% B-FS Filler, **5% W shells** 13% FS, 22% H₂O, 65% WC

80% LiPb, 20%SiC

77% LiPb, 20%SiC, **3% W shells**

15%SiC, 10% LiPb, 75% B-FS Filler 30% FS, 70% H₂O

40%SiC, 50% LiPb, 10% W

15%SiC, 10% LiPb, 75% FS Filler

15%SiC, 10% LiPb, 75% B-FS Filler 13% FS, 22% H₂O, 65% WC ARIES-AT-DCLL
0.5 cm Ultramet, No Shells

79% LiPb, 12% He/void, 6% FS, 3%SiC inserts 15%FS, 10% He, 75% B-FS Filler 17% FS, 34% H₂O, 49% WC

79% LiPb, 12% He/void, 6% FS, 3%SiC inserts

15%FS, 10% He, 75% B-FS Filler 30% FS, 50% H₂O, 20% B-FS

33% FS, 4% W, 63% He

15%FS, 10% He, 75% B-FS Filler

15%FS, 10% He, 75% B-FS Filler 22% FS, 48% H₂O, 30% B-FS

ARIES-AT-DCLL Radiation Limits and Key Parameters

Calculated Overall TBR	1.1	
Net TBR (for T self-sufficiency)	~1.01	
Damage to Structure (for structural integrity)	200	dpa - advanced FS
Helium Production @ VV (for reweldability of FS)	1	He appm
HT S/C TF & PF Magnets (@ 70-80 K): Peak Fast n fluence to Nb ₃ Sn (E _n > 0.1 MeV) Peak Nuclear heating Peak dpa to Cu stabilizer Peak Dose to GFF Polyimide insulator	$ \begin{array}{r} 10^{19} \\ 2 \\ 6x10^{-3} \\ < 10^{11} \end{array} $	n/cm ² mW/cm ³ dpa rads
Plant Lifetime	40	FPY
Availability	85%	
Operational Dose to Workers and Public	< 2.5	mrem/h

Changes and Updates

ARIES-AT-LiPb/SiC

ORNL FS

Li enrichment Average temp Density

Peak NWL @ IB, OB, Div

SiC inserts

FS structure

LiPb:

OB blanket

Shells:

Two VS shells on IB: (toroidally continuous) Two VS shells on OB: (toroidally continuous)

RWM shell on **OB**:

Breeder/coolant manifolds

Shield coolant

IB Blanket-shield gap

VV model

Magnets

Cross section data library

(Reference Design)

 $3.1, 4.8, 2 \text{ MW/m}^2$

90% 700 °C 8.8 g/cc

Two segments

4 cm W between IB blanket & shield

4 cm W between OB blanket segments

1 cm W between OB blanket segments

Discrete

LiPb

1 cm

Homogeneous

HT YBCO

IAEA FENDL-2

ARIES-AT-DCLL

3.4, 4.8, 2 MW/m² (to be confirmed with 3-D)

MF82H FS

< 90% 580 °C 9 g/cc

0.5 cm thick Ultramet

One or two segments?

Cu shell between IB blanket & shield

Cu shell behind OB blanket or between OB blanket segments?

0.5 cm Cu shell behind OB FW or between OB blanket segments?

Toroidally continuous: 25 cm He/LiPb manifolds for IB blanket & shield 35 cm He/LiPb manifolds for OB blanket & shield 20 cm He manifolds for divertor shield (to be confirmed)

He

Heterogeneous with 2-cm-thick plates

LT Nb₃Sn (a la ARIES-RS)

IAEA FENDL-2.1

Ultramet SiC Inserts

(Ref: S. Sharafat, Development Status of Flow Channel Inserts for the U.S.-ITER DCLL TBM; 18th TOFE, 2008)

Main features and advantages:

- 3-5 mm 10% dense foam
- Fully dense CVD SiC face sheets prevent LiPb ingress into foam
- Low SiC content (to alleviate impact on tritium breeding)
- Construction of long segments (> 75 cm) seems feasible
- Low-cost manufacturability
- Good strength, stiffness, and thermal stress resistance
- Low thermal and electrical conductivity.

Testing is underway.

Results so far are promising.

For any type of SiC inserts:

Change of electric conductivity with neutron irradiation could be significant (0.4 at% Mg @ 3 FPY, per Sawan (UW)).

SiC Inserts Degrade Tritium Breeding

Ultramet alleviate impact of SiC on TBR, allowing lower enrichment (< 90%) and/or thinner blanket

ARIES-AT-DCLL TBR

45 cm IB FW/Blanket/Back Wall 80 cm OB FW/Blanket/Back Wall No Shells

ARIES-AT IB Radial Build

ARIES-AT OB Radial Build

ARIES-AT Divertor Radial Build

 $\Delta = 45 \text{ cm}$

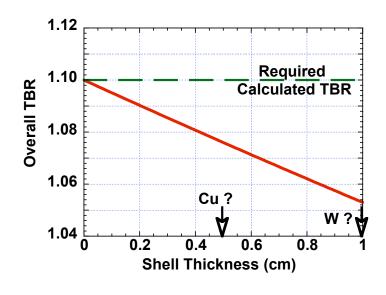
Reference

ARIES-AT-DCLL

Radiation Level

	IB	OB	Div.	Limit
Peak NWL (MW/m ²)	3.4	4.8	2	
dpa at shield (dpa @ 40 FPY): Replaceable Permanent	640 160	 109	1 <mark>080</mark> 160	200
He production at manifolds (He appm @ 40 FPY)	5 *	1	0.8	1
He production at VV (He appm @ 40 FPY)	1	0.2	0.1	1
HT Magnet @ 4 K: Fast neutron fluence (10 ¹⁹ n/cm ² @ 40 FPY)	1	0.5	0.7	1
Nuclear heating (mW/cm ³)	0.6	2	1	2

^{*} Rewelding allowed at top/bottom, not around midplane.



Kink Shell Behind OB FW?

- Could Cu (or W) kink shell be placed behind OB FW?
- Integration of kink shell with blanket?
- Impact on breeding?

ARIES-AT-DCLL OB Blanket with kink shell behind FW

IB and/or OB Blanket should be thickened to compensate for losses in breeding

Shells Between OB Blanket Segments?

- Could OB blanket be segmented into two segments?
- Advantages:
 - Less integration problems
 - Less impact of shells on breeding
 - Lifetime of back segment > 3 FPY (~ 15 FPY)
 - Notable reduction in lifecycle radwaste volume.

ARIES-AT-DCLL OB Blanket with Cu kink and VS shells between OB blanket segments (blanket temp < 700 °C)

Impact of DCLL System on ARIES-AT Economics

	ARIES-AT-LiPb/SiC (Reference)	ARIES-AT-DCLL	Cost of ARIES-AT-DCLL
IB, OB, Div radial standoff*	135 , 160, 133	185 , 219, 178	↑
Major radius	5.2 m	> 5.2 m	↑
Calculated overall TBR	1.1	1.1 w/o shells	
FW/blanket lifetime	4 FPY	2.8 FPY	↑
Overall energy multiplication	1.1	~1.15	\downarrow
Structure unit cost (2004 \$)	510 \$/kg	103 \$/kg	\downarrow
η_{th}	~ 60%	40-45%	↑
Cost of heat transfer/transport system (1992 \$)	\$126M	>\$300M	↑
He pumping power		$> 100 \text{ MW}_{e}$	↑
Level of Safety Assurance (LSA) factor	1	2	↑
COE:			↑
in 1992 \$	48 mills/kWh	> 60 mills/kWh	
in 2004 \$	60 mills/kWh	> 80 mills/kWh	

^{*} Excluding gaps.

Observations and Needed Info

Observations:

- DCLL system increases radial standoff ⇒ Larger and costly machine
- 0.5 cm Ultramet has less impact on breeding compared to 0.5 cm SiC inserts
- IB manifolds are not reweldable near midplane.
- Adding stabilizing shells will degrade breeding, requiring thicker IB/OB blankets
- Segmenting OB blanket offers design advantages.

Needed info:

- Locations of kink shells, vertical stabilizing shells, and feedback coils
- One or two OB blanket segments?
- Confirm manifolds size, composition, and location.

To be considered:

- Change of SiC electric conductivity with neutron irradiation
- Change of electric conductivity of stabilizing shells with neutron irradiation